2515RT SCISSORS

SERVICE MANUAL

For Service Concerns Only
Direct Phone Line to
Service Department,
8:00 AM to 5:00 PM
Central Time,
Monday thru Friday.

Phone (414) 355-3181

Part No. 89-971507 • Initial Issue dated October, 1995 •
Table of Contents

Introduction .. iv
Machine Specifications ... vi
Primary Machine Components .. vii
Undercarriage Components ... ix
Scissors Components ... x
Platform Components ... xi
Lubrication Chart .. xii
Lubrication Diagram .. xiii

Section 1: Transportation and Emergency Procedures

- Transporting the Unit .. 1-3
 - Moving of the Scissors Lift ... 1-3
 - Fork Lifting of the Scissors Lift .. 1-3
 - Crane Lifting of the Scissors Lift .. 1-4
 - Truck Transport of the Scissors Lift .. 1-4
- Unloading Procedures ... 1-5

Section 2: Hydraulic System

- Hydraulic Fluid .. 2-3
 - Handling Precautions .. 2-3
 - Fluid Recommendations .. 2-3
 - Hydraulic Fluid Analysis .. 2-3
 - System Flushing Procedure .. 2-4
- Hydraulic System Functional Description ... 2-5
- Hydraulic System Components .. 2-6
 - Hydraulic Fluid Reservoir Assembly .. 2-6
 - Hydraulic Filter ... 2-6
 - Hydraulic Pump ... 2-6
 - 4 Station Manifold .. 2-6
 - Pressure Relief Valve .. 2-7
- Drive/Steer System .. 2-7
 - Directional Drive Valve .. 2-7
 - Motion Control Valve .. 2-7
 - Flow Divider Valve .. 2-7
 - Freewheel Valve ... 2-7
 - Hydraulic Drive Motors .. 2-7
 - Pressure Reducing Valve .. 2-7
 - Brake Release Pump and Valve .. 2-7
- Steer Cylinder ... 2-7
- Lift System .. 2-8
 - Lift Holding Valve (Check Valves) ... 2-8
 - Flow Control Valve ... 2-8
 - Lift Cylinders ... 2-8
 - Velocity Fuse ... 2-8
 - Emergency (Manually) Lowering Valve ... 2-8
- Traversing Deck System ... 2-9
 - Traversing Deck Cylinder .. 2-9
Table of Contents (Continued)

Section 3: Electrical System

Battery ... 3-3
 Battery Maintenance (in Storage) 3-3
 Battery Maintenance (in Use) 3-3
 Battery Preventive Maintenance 3-4
 Battery Replacement 3-4
Movement Alarm ... 3-4
Tilt Alarm ... 3-4
 Tilt Alarm Test ... 3-4
 Tilt Alarm Adjustment 3-4
Descent Alarm ... 3-5
Automatic Warning Beacon 3-5
Relays .. 3-5
Emergency Stop Buttons 3-5

Section 4: Mechanical Components

Mechanical Components 4-3
 Undercarriage ... 4-3
 Tires ... 4-3
 Changing Tires 4-3
 Wheels and Lug Nuts 4-3
 Front Hub Assembly 4-3
 Repacking Front Wheel Bearings 4-5
 Steer Cylinder Seal Replacement 4-5
 Brake Repair ... 4-7
 Brake Disassembly 4-7
 Brake Assembly 4-7
 Drive Motors ... 4-8
 Hoses and Cable ... 4-8
 Platform Removal 4-9
 Platform Installation 4-9
 Platform Rail Replacement 4-9
 Traversing Deck Cylinder Removal 4-10
 Traversing Deck Cylinder Installation 4-10
 Traversing Deck Cylinder Seal Replacement 4-10
 Lift Cylinder Removal 4-11
 Lift Cylinder Installation 4-11
Table of Contents (Continued)

Section 4: Mechanical Components (Continued)

- Scissors Lift Cylinder Seal Replacement.......................... 4-11
- Scissors... 4-12
- Scissors Arm Removal.. 4-12
- Scissors Arm Installation.. 4-12
- Scissors Arm Disassembly... 4-14
- Scissors Arm Assembly.. 4-14
- Bushing Replacement.. 4-16
- Hand Pump... 4-16
- Hand Pump Replacement.. 4-16
- Hand Pump O-Ring Replacement.. 4-16

Section 5: Troubleshooting

- General Troubleshooting Tips.. 5-3
- Troubleshooting Chart.. 5-4

Section 6: Maintenance

- General Maintenance Tips... 6-3
 - Unpowered Raising of Platform...................................... 6-4
 - First Three Months of Operation.................................... 6-4
- Maintenance Schedule... 6-5
 - Shift Service.. 6-5
 - Weekly Service.. 6-5
 - Monthly Service.. 6-6
 - Semi-Annual Service... 6-6
 - Annual Service.. 6-6
 - Four Year Interval Service.. 6-7
- Shift Operational Checklist... 6-8
- Weekly Operational Checklist... 6-10
- Monthly Operational Checklist.. 6-11
- Semi-Annual Operational Checklist.................................... 6-13

Index

Appendix
INTRODUCTION

This Service Manual is designed to provide you with the instructions needed to properly maintain the SIMON AERIALS INC. Scissors Lift. When used in conjunction with the Operator's and Parts Manuals (provided separately) this Service Manual will assist you in making necessary adjustments or repairs.

Simon Aerial Scissors Lifts are designed and built to provide many years of safe, dependable service. To obtain full benefits from your Scissors Lift, always follow the proper operating and maintenance procedures. Only trained, authorized personnel should be allowed to operate or service this machine. Service personnel should read and study the Operator's, Service and Parts Manuals in order to gain a thorough understanding of the unit prior to making any repairs. Exercise all necessary safety precautions when performing maintenance not covered in this manual.

To help you recognize important safety information, we have identified warnings and instructions that directly impact on safety with the following signals:

⚠️ DANGER

DANGER INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN DEATH OR SERIOUS INJURY. THIS SIGNAL WORD IS TO BE LIMITED TO THE MOST EXTREME SITUATIONS.

⚠️ WARNING

WARNING INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR SERIOUS INJURY.

⚠️ CAUTION

Caution indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices. Caution is permitted for property-damage-only accidents.

Service personnel and machine operators must understand and comply with all warnings and instructional decals on the body of the machine, and at the ground controls and platform control console.
MODIFICATIONS OF THIS MACHINE FROM THE ORIGINAL DESIGN ARE STRICTLY FORBIDDEN WITHOUT WRITTEN PERMISSION FROM SIMON AERIALS INC. AND WILL VOID ANY REMAINING WARRANTY.

SIMON AERIALS INC. reserves the right to change, improve, modify or expand features of its equipment. Therefore, specifications, models or equipment are subject to change without notice, and without incurring obligations.

Any procedures not found within this manual must be evaluated by the individual to assure himself that they are "proper and safe", because it is not possible to cover all potential procedures.

All SIMON AERIALS INC. manuals are periodically updated to reflect changes that occur in the equipment. Please contact the factory for information regarding changes to your machine which may not be included in the manual.
MACHINE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Height</td>
<td>31 Ft / 9.45 M</td>
</tr>
<tr>
<td>Platform Height</td>
<td>25 Ft / 7.62 M</td>
</tr>
<tr>
<td>Stowed Height:</td>
<td></td>
</tr>
<tr>
<td>Without Rails</td>
<td>51 In / 1.29 M</td>
</tr>
<tr>
<td>With Rails</td>
<td>93 In / 2.36 M</td>
</tr>
<tr>
<td>Platform Capacity (Evenly Distributed):</td>
<td></td>
</tr>
<tr>
<td>With Standard Deck</td>
<td>1,500 LBS / 675 Kg</td>
</tr>
<tr>
<td>With Traversing or Roll-Out Deck (Optional)</td>
<td>1,250 LBS / 560 Kg</td>
</tr>
<tr>
<td>Platform Dimensions:</td>
<td></td>
</tr>
<tr>
<td>With Standard Deck</td>
<td>64 In x 124 In / 1.63 M x 3.15 M</td>
</tr>
<tr>
<td>Guard Rail Height</td>
<td>42 In / 1.07 M</td>
</tr>
<tr>
<td>Toe Board Height</td>
<td>6 In / 15.24 Cm</td>
</tr>
<tr>
<td>Traversing Deck (Optional)</td>
<td>4 Ft / 1.22 M</td>
</tr>
<tr>
<td>Roll-Out Deck (Optional)</td>
<td>3 Ft / .91 M</td>
</tr>
<tr>
<td>Length</td>
<td>128 In / 3.25 M</td>
</tr>
<tr>
<td>Width</td>
<td>75 In / 1.91 M</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>95 In / 2.41 M</td>
</tr>
<tr>
<td>Wheel Track</td>
<td>63 In / 1.60 M</td>
</tr>
<tr>
<td>Inside Turning Radius</td>
<td>11 Ft / 3.43 M</td>
</tr>
<tr>
<td>Outside Turning Radius</td>
<td>18 Ft / 5.49 M</td>
</tr>
<tr>
<td>Ground Clearance</td>
<td>8.5 In / 25.4 Cm</td>
</tr>
<tr>
<td>Weight (Approx.)</td>
<td>5,350 LBS / 2426 Kg</td>
</tr>
<tr>
<td>Drive System</td>
<td></td>
</tr>
<tr>
<td>Drive Speed (Platform Elevated)</td>
<td>0.8 MPH / 1.29 k.p.h.</td>
</tr>
<tr>
<td>Drive Speed (Platform Lowered)</td>
<td>2.8 MPH / 4.50 k.p.h.</td>
</tr>
<tr>
<td>Lift/ Lower Speed (Approx.)</td>
<td>28 sec / 38 sec</td>
</tr>
<tr>
<td>Gradeability (on hard surface - refer to page vi)</td>
<td>16° / 29%</td>
</tr>
<tr>
<td>Tire Size</td>
<td>26 x 12 STG</td>
</tr>
<tr>
<td>Tire Pressure (not applicable for foam filled tires)</td>
<td>45 psi / 3.10 Bar</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque</td>
<td>90 Ft. LBS / 122 Nm</td>
</tr>
<tr>
<td>Power Wheel Mounting Bolt Torque</td>
<td>120 Ft. LBS / 162.72 Nm</td>
</tr>
<tr>
<td>Hydraulic Operating Pressure</td>
<td>2900 psi / 189.61 Bar</td>
</tr>
<tr>
<td>Hydraulic Fluid Capacity</td>
<td>14 Gal / 53 Liters</td>
</tr>
<tr>
<td>Fuel Capacity</td>
<td>10 Gal / 38 Liters</td>
</tr>
<tr>
<td>Power System</td>
<td>24 HP Air-Cooled</td>
</tr>
<tr>
<td>Alternator</td>
<td>20 amp</td>
</tr>
<tr>
<td>Standard Engine</td>
<td>Onan 24 hp Gasoline</td>
</tr>
<tr>
<td>Engine Options:</td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>35 hp Wisconsin</td>
</tr>
<tr>
<td>Dual Fuel</td>
<td>35 hp Wisconsin</td>
</tr>
<tr>
<td>Diesel</td>
<td>Deutz F2L1011</td>
</tr>
<tr>
<td></td>
<td>Deutz F3L1011</td>
</tr>
<tr>
<td></td>
<td>Isuzu 3KR1</td>
</tr>
<tr>
<td></td>
<td>Perkins 103-15</td>
</tr>
</tbody>
</table>

October 1995
PRIMARY MACHINE COMPONENTS

PLATFORM CONTROL CONSOLE

PLATFORM

SCISSORS ASSEMBLY (ARMSSET)

LIFT CYLINDERS

HYDRAULIC TANK

ENGINE

GROUND CONTROL BOX

CHASSIS

BATTERY

FUEL TANK
SCISSORS ARM COMPONENTS

- Upper Scissor Arm Assembly Inner
- Upper Scissor Arm Assembly Outer
- Upper Middle Scissor Arm Assembly Outer
- Upper Middle Scissor Arm Assembly Inner
- Lower Middle Scissor Arm Assembly Outer
- Lower Middle Scissor Arm Assembly Inner
- Lower Scissor Arm Assembly Outer
- Lower Scissor Arm Assembly Inner
- Upper Lift Cylinder
- Lower Lift Cylinder
LUBRICATION CHART

<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>SPECIFICATION AND QUANTITY</th>
<th>FREQUENCY OF LUBRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydraulic reservoir</td>
<td>Mobil AW 32 fill to top of sight gauge with machine stowed</td>
<td>Check daily Analyze every 6 months or 500 hours.* Change yearly or every 1,000 hours.**</td>
</tr>
<tr>
<td>2.</td>
<td>Hydraulic filter</td>
<td>Filter element.</td>
<td>Change every 6 months or 500 hours.*</td>
</tr>
<tr>
<td>3.</td>
<td>Pivot pins</td>
<td>Lithium N.L.G.I. #2 EP Purge old grease</td>
<td>Monthly or every 100 hours.*</td>
</tr>
<tr>
<td>4.</td>
<td>King Pins</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.*</td>
</tr>
<tr>
<td>5.</td>
<td>Steering Linkages and Pivot points</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.*</td>
</tr>
<tr>
<td>6.</td>
<td>Scissors arm roller and pivot ears</td>
<td>Light grade oil.</td>
<td>Monthly or every 100 hours.*</td>
</tr>
</tbody>
</table>

* Whichever occurs first.
** Different requirements for severe duty applications. See check lists.
SECTION 1: TRANSPORTATION AND EMERGENCY PROCEDURES
Table of Contents, Section 1

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporting the Unit</td>
<td>1-3</td>
</tr>
<tr>
<td>Moving of the Scissors Lift</td>
<td>1-3</td>
</tr>
<tr>
<td>Fork Lifting of the Scissors Lift</td>
<td>1-3</td>
</tr>
<tr>
<td>Crane Lifting of the Scissors Lift</td>
<td>1-4</td>
</tr>
<tr>
<td>Truck Transport of the Scissors Lift</td>
<td>1-4</td>
</tr>
<tr>
<td>Unloading Procedures</td>
<td>1-5</td>
</tr>
<tr>
<td>Emergency System and Procedures</td>
<td>1-6</td>
</tr>
<tr>
<td>Emergency Lowering</td>
<td>1-6</td>
</tr>
<tr>
<td>Emergency Procedures</td>
<td>1-6</td>
</tr>
</tbody>
</table>
TRANSPORTING THE UNIT

Platform should be in the stowed position when the machine is being transported. Do not operate the machine while it is being transported.

MOVING THE MACHINE

If your machine is equipped with the TOWING PACKAGE (OPTIONAL), it can be winched or moved short distances in case of power failure at speeds not to exceed 5 MPH (8.05 kph). Do not tow over rough bumpy surfaces.

To move the machine:

1. Attach tow tongue to towing vehicle.
2. Tighten brake valve (square knob) by turning clockwise.
3. Open ball (loop) valve handle (to loop drive motors).
4. Pump brake until released.

DANGER

AFTER RELEASING THE BRAKE, THERE IS NOTHING TO STOP THE MACHINE'S TRAVEL. MACHINE WILL ROLL FREELY ON SLOPES, BE ON GUARD AGAINST RUNAWAY. DO NOT DRIVE MACHINE WITH BRAKES RELEASED.

6. If towing the machine on a public road way, install stop, and turn on tail lamps as required. (Check with local codes).

7. Check to ensure that both ground and platform emergency stop switches are in the "OFF" position (not pushed in).

8. Open emergency lowering valve.

To return to normal operation, close emergency lowering valve, open brake valve (square knob) by turning it counterclockwise on brake pump and close ball (loop) valve. Now, unhook from tow vehicle.

IMPORTANT: All Simon Scissors models are of rigid frame construction. There is no suspension and many hydraulic and electrical connections could loosen if repeatedly jarred.

FORK LIFTING THE MACHINE

- Ensure that the lift truck is of sufficient capacity for lifting the machine (see "Machine Specifications" for gross machine weight).
- Lift the Simon Machine from the sides only.
- Position forks under the chassis frame, between the front and rear wheels and as near to the rear (driving) wheels as possible.

CAUTION

Do not use tie down lugs to lift the machine.
CRANE LIFTING THE MACHINE

- Ensure that the crane is of sufficient capacity for lifting the machine (see "Machine Specifications" for gross machine weight).

- Ensure that the appropriate spreader bars and chains are available.

- Slide the chains through the front and rear crossmembers of the chassis. Lift the machine evenly so the machine is straight.

TRUCK TRANSPORTING THE MACHINE

- The Machine may be winched onto a transporting vehicle IF THE MACHINE IS EQUIPPED WITH THE TOWING PACKAGE (OPTIONAL). Return emergency lowering valve and wheel spline to normal operating position (engaging the brake) when the machine is on the transporting vehicle.

- Securely attach the machine to the transporting vehicle using the tie down lugs, located at the sides of the chassis. Ensure that the chains or straps have adequate load capacity, and DO NOT OVERTIGHTEN.

⚠️ CAUTION

Do not use tie down lugs to lift the machine.

- Always chock the wheels of the machine while on the transporting vehicle.

Recommended Tie-Down.
UNLOADING PROCEDURES

Your Simon Self Propelled Scissors is virtually ready for use when received. We recommend, however, that you inspect the machine for damage in shipment and file a claim with the delivering carrier if damage is apparent. A pre-delivery inspection report must be completed before operation and forwarded to Simon Aerials Inc. within 30 days of receiving the machine.

- Inspect the outside of the machine for damage. Inspect all hoses, scissors assembly (armset) and cables for chafing or road damage. Confirm that all wheel lug nuts are tight (refer to the "Machine Specifications").

- Inspect all electrical and hydraulic connections for damage and security.

- Connect battery cables to battery if required. Check electrolyte level.

- Check that fluid level is to the fill mark on the hydraulic tank, and add fluid as required (see "Lubrication Chart").

- Attach the machine to a winch for the unloading.

- Remove all machine tie downs. Remove wheel chocks.

- Enter the platform, and start the engine using the platform controls. Select the "HIGH" speed, and test all platform functions.

- Carefully drive the machine off the truck or trailer with the winch still attached.

- Before placing the machine into service, all operators must read and understand the contents of the Operator’s Manual.

- Upon initial unloading of the machine the Predelivery Inspection Report must be completed and returned in order to activate the Simon Limited Warranty.

WARNING

ALWAYS ATTACH THE MACHINE TO A WINCH WHEN LOADING OR UNLOADING FROM A TRUCK OR TRAILER IF DRIVEN OFF. WE DO NOT RECOMMEND UNASSISTED LOADING OR UNLOADING OF ANY SCISSORS.

READ AND UNDERSTAND ALL SAFETY, CONTROL AND OPERATING INFORMATION FOUND ON THE MACHINE AND IN THIS MANUAL BEFORE OPERATING THE MACHINE.
DANGERS

IF THE MOTOR OR CONTROL SYSTEM FAILS WHILE THE PLATFORM IS RAISED, DO NOT ATTEMPT TO CLIMB DOWN SCISSORS ASSEMBLY. SERIOUS INJURY MAY RESULT.

HAVE AN EXPERIENCED OPERATOR USE THE EMERGENCY LOWERING PROCEDURE TO SAFELY LOWER THE PLATFORM.

THIS MACHINE IS NOT INSULATED AND EXTREME CARE MUST BE TAKEN WHEN WORKING AROUND POWER LINES.

DO NOT TOUCH THE UNIT IF THERE IS A CHANCE IT IS IN CONTACT WITH POWER LINES. WAIT UNTIL THE POWER TO THE LINES HAS BEEN SHUT OFF.

EMERGENCY LOWERING

CAUTION

In the event of primary power failure, emergency lowering of the platform can be accomplished from ground level by opening the emergency lowering valve at the rear of the undercarriage.

NOTE: The emergency lowering valve must be in the "NORMAL" position before the platform will raise and hold in position. All machine functions except platform lowering require power.

Report the incident to your supervisor immediately.

EMERGENCY PROCEDURES

It is not possible for us to foresee every emergency situation that could arise during operation of this machine. Information on the following pages describes three typical emergency situations and lists appropriate actions that can be taken.

When faced with an emergency, above all please remember:

- Stay calm.
- Think through the situation before operating the machine.
- Get help if necessary.

SITUATION: Platform elevated, operator not incapacitated, but unit will not respond to platform controls.

POSSIBLE CONDITION

- One or more functions not operating correctly.
- Unit movement from unselected control.
- Unit function will not stop unless power is switched off.

CORRECTIVE ACTION

1. Remove foot from pedal and remove hand from the power control.

2. Push the red "Emergency Stop" button.

3. Evaluate the nature of the failure, lower the platform using platforms controls if possible. If not, have an experienced operator lower the platform using the ground emergency lowering valve.
DANGER

DO NOT TRY TO CLIMB DOWN THE SCISSORS ASSEMBLY.

AN EXPERIENCED OPERATOR SHOULD USE THE EMERGENCY LOWERING VALVE AT THE REAR OF THE UNDERCARRIAGE TO SAFELY LOWER THE PLATFORM.

4. Report the incident to your supervisor immediately.

SITUATION: Unit elevated, with operator incapacitated at controls.

DANGER

DO NOT TOUCH UNIT !!!

DETERMINE THE CAUSE OF THE PROBLEM BEFORE YOU TOUCH THE MACHINE.

CORRECTIVE ACTION

1. Have someone summon first aid or rescue squad.

2. Attempt to talk to operator before taking any rescue measures.

3. Check to see if operator is in a pinned position or would be endangered if platform is moved before attempting emergency lowering procedure.

4. After establishing that the machine is not in contact with live power lines, lower platform using the emergency lowering valve located at the rear of the undercarriage.

5. Render first aid to the operator.

6. Report the incident to your supervisor immediately.

IMPORTANT: Any incident involving personal injury must be immediately reported to the local Simon Aerials Distributorship as well as to Simon Aerials Inc.

SITUATION: Platform in contact with live power lines and operator incapacitated.

DANGER

DO NOT TOUCH UNIT !!!

ELECTROCUTION HAZARD!!!

CORRECTIVE ACTION

1. Contact authorized personnel to disconnect power supply touching unit.

2. Have someone summon first aid or rescue squad.

3. If operator is unconscious, check to see if he is in a pinned position, or would be endangered if platform is moved.

4. AFTER POWER IS CUT, use the emergency lowering valve located at the ground control station to bring platform with operator to a safe location to render first aid.

5. Report the incident to your supervisor immediately.

IMPORTANT: Any incident involving personal injury must be immediately reported to the local Simon Aerials Distributorship as well as to Simon Aerials Inc.
SECTION 2: HYDRAULIC SYSTEM
Table of Contents, Section 2:

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Fluid</td>
<td>2-3</td>
</tr>
<tr>
<td>Handling Precautions</td>
<td>2-3</td>
</tr>
<tr>
<td>Fluid Recommendations</td>
<td>2-3</td>
</tr>
<tr>
<td>Hydraulic Fluid Analysis</td>
<td>2-3</td>
</tr>
<tr>
<td>System Flushing Procedure</td>
<td>2-4</td>
</tr>
<tr>
<td>Hydraulic System Functional Description</td>
<td>2-5</td>
</tr>
<tr>
<td>Hydraulic System Components</td>
<td>2-6</td>
</tr>
<tr>
<td>Hydraulic fluid reservoir Assembly</td>
<td>2-6</td>
</tr>
<tr>
<td>Hydraulic Filter</td>
<td>2-6</td>
</tr>
<tr>
<td>Hydraulic Pump</td>
<td>2-6</td>
</tr>
<tr>
<td>4 Station Manifold</td>
<td>2-6</td>
</tr>
<tr>
<td>Pressure relief valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Drive/Steer System</td>
<td>2-7</td>
</tr>
<tr>
<td>Directional Drive Valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Motion Control Valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Flow Divider Valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Freewheel Valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Hydraulic Drive Motors</td>
<td>2-7</td>
</tr>
<tr>
<td>Pressure Reducing Valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Brake Release Pump and Valve</td>
<td>2-7</td>
</tr>
<tr>
<td>Steer Cylinder</td>
<td>2-7</td>
</tr>
<tr>
<td>Lift System</td>
<td>2-8</td>
</tr>
<tr>
<td>Lift holding Valve (Check Valves)</td>
<td>2-8</td>
</tr>
<tr>
<td>Flow Control Valve</td>
<td>2-8</td>
</tr>
<tr>
<td>Lift Cylinders</td>
<td>2-8</td>
</tr>
<tr>
<td>Velocity Fuse</td>
<td>2-8</td>
</tr>
<tr>
<td>Emergency (Manually) Lowering Valve</td>
<td>2-8</td>
</tr>
<tr>
<td>Traversing Deck System</td>
<td>2-9</td>
</tr>
<tr>
<td>Traversing Deck Cylinder</td>
<td>2-9</td>
</tr>
</tbody>
</table>
HYDRAULIC FLUID

HANDLING PRECAUTIONS

⚠️ WARNING
PERSONS IN REGULAR CONTACT WITH MINERAL-BASED HYDRAULIC FLUID NEED TO BE AWARE OF THE IMPORTANCE OF THOROUGH HYGIENE, AND THE PROPER METHODS FOR HANDLING MINERAL OILS IN ORDER TO AVOID POTENTIAL HAZARDS TO HEALTH.

If mineral-based hydraulic fluid is SPLASHED INTO THE EYES, it must be WASHED OUT THOROUGHLY using abundant quantities of water. If irritation persists, medical advice should be sought.

Mineral oils act as solvents on the natural oils in the skin. FREQUENT AND PROLONGED SKIN CONTACT CAN CAUSE DERMATITIS OR SEVERE IRRITATION. Mineral-based hydraulic fluids normally present no health hazard when used properly. Protective clothing and proper washing facilities should be provided or be accessible.

⚠️ WARNING
HYDRAULIC FLUID UNDER PRESSURE CAN PENETRATE AND BURN THE SKIN, DAMAGE EYES, AND MAY CAUSE SERIOUS INJURY, BLINDNESS, AND EVEN DEATH.

FLUID LEAKS UNDER PRESSURE MAY NOT ALWAYS BE VISIBLE.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, WITHIN A FEW HOURS, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY.

FLUID RECOMMENDATIONS

We strongly recommend the use of MOBIL AW32 HYDRAULIC FLUID. An EQUIVALENT substitute can be used if absolutely necessary. Mineral-based hydraulic fluids produced by different companies will USUALLY mix with each other satisfactorily, but this IS NOT RECOMMENDED. When in doubt, consult your supplier.

MOBIL AW32 has proven to be suitable for use in all climates. For continued operation in temperatures below 32°F (0°C), use of MOBIL AW32 FLUID is satisfactory.

For operation in tropical climates the use of MOBIL AW68 is allowable.

HYDRAULIC FLUID ANALYSIS

Use the following as a guide to determine when analysis of the hydraulic fluid is necessary.

- Any time the hydraulic pump is replaced.
- If fluid discoloration is noticed in the hydraulic reservoir sight tube.
- If, after the first 50 hours of operation, the hydraulic filter element is plugged.
- Any time the hydraulic filter element shows signs of metal contamination.
- Once every six months, under normal operating conditions.
- Every 3 months, in extremely dusty or dirty operating conditions.
HYDRAULIC FLUID ANALYSIS (CONTINUED)

The hydraulic fluid analysis must be done by a qualified laboratory. To ensure that you receive accurate recommendations about the fluid being analyzed, always provide the following information with the test sample.

- Type of hydraulic fluid (see Lubrication Chart for recommended hydraulic fluid and/or your records).
- Model and serial number of unit from which sample was taken.
- Purpose of analysis: pump failure, discoloration, etc.
- Type of analysis: complete to show additive breakdown, acid buildup, viscosity, type and percent of contaminants; also, comparison to new fluid and recommendations.

Comply with contamination analysis and recommendations to achieve a clean, contamination free hydraulic system.

Following the above guidelines will prevent premature failure of pumps, cylinder seals and drive motors, and unnecessary down time.

If system flushing and replacement of fluid is recommended, refer to the flushing procedure.

SYSTEM FLUSHING PROCEDURE

1. With platform fully down, drain hydraulic fluid from hydraulic tank into a clean, empty container. Use an oil filter cart so the fluid may be reused if analysis is good.

2. When the hydraulic tank is empty, remove suction strainer and hose.

3. Remove three (3) return line hoses at back of hydraulic tank.

4. Remove the return filter and hoses.

5. Flush the hoses with clean hydraulic fluid.

6. Discard old return filter element and replace.

7. With hoses removed from the hydraulic tank, flush out the tank.

8. Reinstall all hoses removed in the previous steps.

9. If the hydraulic fluid removed from the reservoir is good, pump it through a filter cart back into the tank. If fluid is not usable, dispose of it properly. Fill hydraulic tank with filtered, fresh hydraulic fluid (refer to Lubrication Chart).

10. Loosen output hose fittings at pump to allow pump to flood with hydraulic fluid. Tighten fittings.

11. Start up the unit. Briefly operate all functions. Two or three full lift cycles may be necessary to purge all air from lift cylinders.

12. When the above procedures have been completed, fill hydraulic tank to full mark on sight gauge.

13. Check for leaks and correct as necessary. Unit is now ready to be placed back in operation.
HYDRAULIC SYSTEM FUNCTIONAL DESCRIPTION

The hydraulic pump pulls fluid from the reservoir, and outputs it to the 4 station manifold.

The hydraulic pump only works when pressure is needed to operate a function. When pressure builds up to 2900 psi (200 Bar, 204 Kg/cm²) in the lift and drive circuit, such as when a function is deadheaded, the main pressure relief valve triggers, returning hydraulic fluid back to the reservoir.

The drive handle at the platform controls a solenoid operated proportional flow valve that pilots open a valve should pressure exceed 2900psi, and a directional control valve which directs fluid to the hydraulic drive motors for forward or reverse movement. The motion control valve with brake shuttle valve directs fluid flow to the brake cylinder, releasing the spring applied brake and allowing the scissors lift to move. When flow is cut off to the brake cylinder the brake is applied, which functions as a parking brake, arresting motion while the unit is parked.

Steering is accomplished via a directional control valve on the 4 station manifold (steer valve) which directs fluid to the steer cylinder for turning left or right.

To raise the platform, the hydraulic pump is activated and the lift valve shifts providing free flow to the lift cylinders. When the platform is lowered the pump does not operate. The lift valve spool permits fluid flow back to the reservoir through the velocity fuse, the flow control valve and holding valve. The flow control valve orifice controls the rate of descent.

To move the deck out from the platform, the traversing deck valve shifts to allow fluid flow to the base end of the traversing deck cylinder. To move the deck in, the traversing deck valve shifts in the other direction, allowing fluid flow is to the rod end of traversing deck cylinder which retracts the platform.
HYDRAULIC SYSTEM COMPONENTS

HYDRAULIC FLUID RESERVOIR ASSEMBLY

The hydraulic fluid reservoir consists of the tank, a filler cap with breather, a suction strainer, a drain plug, a sight gauge, a return filter with a 10 micron filter element and an optional high pressure filter.

Perform the following steps on a weekly basis.

- Check tank for signs of leakage.
- Inspect tank securing bolts for tightness.

HYDRAULIC PUMP

A gasoline, or optional Diesel or dual fuel engine drives the hydraulic pump. The pump provides hydraulic fluid flow to operate the machine functions. There are no adjustments on the pump.

4 STATION MANIFOLD

This valve manifold is located on the underside of the front end of the undercarriage and consists of the lift valve, steer valve, proportional drive valve and optional transversing deck valve, as well as the pressure relief valve.

LIFT VALVE

The lift valve is a 3 position, 2-way, spring centered solenoid directional control valve. It has two solenoids and is closed centered. The coils can be replaced if faulty, and there is a replacement seal kit available.

STEER VALVE

The steer valve is a 3 position, 2-way, spring centered solenoid directional control valve. It has two solenoids and is closed centered. The coils can be replaced if faulty, and there is a replacement seal kit available.

DRIVE PROPORTIONAL VALVE

The drive proportional valve is a solenoid operated electrical control proportional flow control valve. It also has a valve piloted to tank if the pressure is greater in the drive circuit than 2900 psi. The coil can be replaced if faulty, and there is a replacement seal kit available.

TRAVERSING DECK VALVE (OPTIONAL)

The traversing deck valve is a 3 position, 2-way, spring centered solenoid directional control valve. It has two solenoids and is closed centered. The coils
can be replaced if faulty, and there is a replacement seal kit available.

PRESSURE RELIEF VALVE

The pressure relief valve is is a differential poppet relief valve used as a pressure limiting device. It is preset at the factory to 2900 PSI (200 Bar, 204 kg/cm²).

To adjust pressure relief valve:

1. Loosen seal nut.
2. Deadhead pressure and check reading.
3. Use a hex key to adjust pressure. Backing out hex socket screw decreases pressure.
4. Tighten seal nut and remove pressure gauge.

DRIVE/STEER SYSTEM

The drive/steer system consists of the proportional drive valve and steer valve mounted on the 4 station manifold, and the directional drive valve, the motion control valve, the freewheel valve, the hydraulic drive motors, and the steer cylinder.

DIRECTIONAL DRIVE VALVE

The drive valve is a 3 position, 2-way, spring centered directional control valve. It is also a motoring spool type, open center valve. The coils can be replaced if faulty, and there is a replacement seal kit available.

MOTION CONTROL VALVE

The motion control valve consists of a dual piloted open, spring closed set of two dual counterbalance valves, and a brake shuttle valve. The counterbalance valves are piloted open by system back pressure and the pressure from the output of the corresponding counterbalance valve. The motion control valve requires no adjustment and a replacement seal kit is available.

FLOW DIVIDER VALVE

The flow divider valve consists of a pair of restrictor orifices that allow equal fluid flow to or from the drive motors. It requires no adjustment.

FREEWHEEL VALVE

The freewheel valve is a manually operated valve. The closed position is for normal operation. The open position allows for free turning of the drive wheels. It requires no adjustment.

HYDRAULIC DRIVE MOTORS

There are two hydraulic drive motors, one for each rear wheel. They are not field repairable and should be replaced if leaking or faulty.

PRESSURE REDUCING VALVE

The pressure reducing valve is a spring opened relief valve. When pressure exceeds 400 psi, the valve is piloted closed, diverting fluid flow back to the hydraulic reservoir. It is factory preset but can be adjusted in the field by backing out from fully closed position 1/2 turn to set at 400 psi.

BRAKE RELEASE PUMP AND VALVE

The brake release pump and valve is a manually operated system used to release the brakes when towing the machine. It requires no adjustment and a seal kit is available.

STEER CYLINDER

The cylinder is a double acting type. Refer to the Mechanical Section of this manual for cylinder assembly and disassembly, repair or replacement procedures.
LIFT SYSTEM

The lift system consists of a lift valve on the 4 station manifold, a holding valve, a flow control valve and two lift cylinders equipped with velocity fuses, as well as an emergency lowering valve.

LIFT HOLDING VALVE (CHECK VALVES)

The holding valve is a solenoid operated valve which prevents flow from the cylinders in the deenergized state. When the solenoid coil is energized, the valve spool shifts, allowing flow from the lift cylinders to the hydraulic fluid reservoir.

FLOW CONTROL VALVE

The flow control valve restricts fluid flow from the lift cylinders, while providing free flow to the lift cylinders. It should be adjusted to approximately 2-1/4 turns from fully closed.

LIFT CYLINDERS

There are two (2) hydraulic cylinders in this scissors lift circuit. The cylinders are of the double acting type. Refer to the Mechanical Section of this manual for cylinder assembly and disassembly, repair or replacement procedures.

VELOCITY FUSE

There is one velocity fuse on each lift cylinder which acts as a holding valve. A 4 GPM fuse is used on the top lift cylinder and a 5 GPM fuse is used on the bottom lift cylinder. Replace if faulty.

EMERGENCY (MANUALLY) LOWERING VALVE

This valve is a manual shut off valve located on the undercarriage. It is used only in emergency situations. During normal operation the valve should be in the "NORMAL OPERATION" position. Replace if faulty.
TRAVERSING DECK SYSTEM

The traversing deck system consists of the traversing deck valve on the 4 station manifold and the traversing deck cylinder.

TRAVERSING DECK CYLINDER

The cylinder is of the double acting type. Refer to the Mechanical Section of this manual for cylinder assembly and disassembly, repair or replacement procedures.
SECTION 3:
ELECTRICAL SYSTEM
Table of Contents, Section 3

ELECTRICAL SYSTEM

Battery ... 3-3
 Battery Maintenance (in Storage) ... 3-3
 Battery Maintenance (in Use) ... 3-3
 Battery Preventive Maintenance ... 3-4
 Battery Replacement .. 3-4
Movement Alarm .. 3-4
Tilt Alarm ... 3-4
 Tilt Alarm Test .. 3-4
 Tilt Alarm Adjustment .. 3-4
Descent Alarm ... 3-5
Automatic Warning Beacon ... 3-5
Relays .. 3-5
Emergency Stop Buttons ... 3-5
ELECTRICAL SYSTEM

The following section is a description of maintenance for the major components of the 2515G scissors electrical system.

BATTERY

One 12 volt battery supplies the electrical current required to operate the electrical circuits for the 2515G scissors.

BATTERY MAINTENANCE (IN STORAGE)

Follow these procedures for maintenance of batteries on a machine not in use:

Keep batteries clean. Electrolyte of "wet" batteries should be checked regularly, and kept at proper levels.

Never stack one battery directly on top of another, because post or container damage can result. If batteries are stored individually, place supporting boards between layers. Do not stack more than three high, and rotate stock so that the oldest batteries are used first.

"Wet" batteries should be kept fully charged. A "wet" battery, while in storage, should be recharged to full charge at the following intervals:

<table>
<thead>
<tr>
<th>If stored at:</th>
<th>Recharge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 40° F (4° C)</td>
<td>None required</td>
</tr>
<tr>
<td>40° to 60° F (4° to 15° C)</td>
<td>Every 2 months</td>
</tr>
<tr>
<td>Above 60° F (15° C)</td>
<td>Every month</td>
</tr>
</tbody>
</table>

BATTERY MAINTENANCE (IN USE)

Check battery and surrounding area for signs of damage or corrosion.

Check battery terminals for:

- Corrosion. Regularly clean connections and apply a non-metallic grease or protective spray to retard corrosion.

- Loose connections. Be sure all cable connections are tight, and that good contact is made to terminals.

- Broken or frayed cables. Be sure all cable connections are good, and that no loose or broken wires are exposed. Replace as needed.

Check battery electrolyte level. Replenish the electrolyte, if necessary. Remove vent caps before filling, and USE ONLY DISTILLED WATER. Fill all cells to the proper level. Do not overfill. Fill to level indicator (or 1/2 inch over the top of the separators if there is no level indicator). Fill after charging to prevent overflow of acid due to expansion. Do not use a hose to add water to batteries.

Allowing the electrolyte level to drop below the top of the separators will lead to shortened battery life. Excessive water usage can indicate that a battery has been overcharged, has been subjected to excessively high temperatures, or is nearing the end of its service life.

Keep battery clean. Wash the top of the battery, making sure all vent caps are in place. Do not allow cleaning water or other foreign matter to enter the cells. Use a solution of bicarbonate of soda and water to wash the battery if there is an accumulation of acid.
BATTERY PREVENTIVE MAINTENANCE

Once a month, after battery has been charged, spot check the specific gravity of two or more cells. A fully charged battery should indicate 1.28 specific gravity. If low readings are noted, check the following:

- Check terminals for corrosion, loose connections and broken or frayed cables.

- Check all cells with a hydrometer for variation in specific gravity. A variation of 0.03 points or more between cells is cause for concern. Mark the low cells.

Recheck specific gravity of all cells after recharging.

BATTERY REPLACEMENT

To remove the batteries, follow these procedures:

⚠️ WARNING
BEFORE REMOVING BATTERIES FROM THE UNIT, TURN OFF THE IGNITION SWITCH. THERE SHOULD BE NO POWER TO THE MACHINE.

Always disconnect the negative battery cables first.

Remove bolts holding battery to undercarriage.

Lift the battery from the undercarriage. Put the battery to the side and dispose of properly.

⚠️ CAUTION
Always connect the positive battery cable first.

To install battery lift and position it on undercarriage. Secure battery in position with battery hold downs. Connect battery cables.

MOVEMENT ALARM (OPTIONAL)

The movement alarm is activated as soon as the platform console drive lever is moved off the center "Neutral" position.

⚠️ WARNING
THE MOVEMENT ALARM IS PROVIDED FOR YOUR PROTECTION, AND PROTECTION OF PERSONS WORKING IN IMMEDIATE AREA. DISABLING THIS IMPORTANT SAFETY DEVICE MAY RESULT IN DEATH OR SERIOUS INJURY.

TILT ALARM (OPTIONAL)

The tilt alarm gives an audible warning when the machine is five degrees or more out of level. To replace the tilt alarm, remove it from its support and disconnect the wires.

TILT ALARM TEST

The alarm can be tested by raising the platform above the high speed limit switch, and manually tipping the alarm sensor. This "Push-to-Test" feature enables tilt alarm to be tested without losing its adjustment.

Individually push down on each of the three fastened corners of the tilt alarm. There should be enough travel to cause the alarm to sound as each corner is pressed (there is approximately a three second delay).

If the alarm does not sound, the flange nuts have been tightened too far. Loosen the nut on the 90° corner and repeat this test procedure.

TILT ALARM ADJUSTMENT

The tilt alarm can be adjusted. Before attempting to adjust the alarm, park the machine on a flat, level surface.
Level the base of the alarm by tightening each of the three flange nuts on top of the spring loaded assembly and check it with a level.

Check to be sure the electrical connections are correct.

DESCENT ALARM (OPTIONAL)

The descent alarm gives an audible warning when the platform is being lowered. To replace the descent alarm, remove it from the ground electrical box and disconnect the wires.

RELAYS

There are relays located in the ground control box. (Refer to the schematic at the end of this manual for relay functions and interconnect.)

EMERGENCY STOP BUTTONS

There are two emergency stop buttons: one on the platform control and the other at ground controls.

When the emergency stop button is pressed, all functions stop immediately and the wheel brake is automatically applied. Turn the button clockwise to reset.

To replace the emergency stop button, remove the four control console cover screws to gain access for button removal. Remove the appropriate button mounting screws and wires.
SECTION 4:
MECHANICAL COMPONENTS
Table of Contents, Section 4

Mechanical Components .. 4-3
 Undercarriage .. 4-3
 Tires .. 4-3
 Changing Tires ... 4-3
 Wheels and Lug Nuts ... 4-3
 Front Hub Assembly .. 4-3
 Repacking Front Wheel Bearings 4-5
 Steer Cylinder Seal Replacement 4-5
 Brake Repair ... 4-7
 Brake Disassembly ... 4-7
 Brake Assembly .. 4-7
 Drive Motors .. 4-8
 Hoses and Cable .. 4-8
 Platform Removal .. 4-9
 Platform Installation ... 4-9
 Platform Rail Replacement ... 4-9
 Traversing Deck Cylinder Removal 4-10
 Traversing Deck Cylinder Installation 4-10
 Traversing Deck Cylinder Seal Replacement 4-10
 Lift Cylinder Removal .. 4-11
 Lift Cylinder Installation .. 4-11
 Scissors Lift Cylinder Seal Replacement 4-11
 Scissors ... 4-12
 Scissors Arm Removal .. 4-12
 Scissors Arm Installation ... 4-12
 Scissors Arm Disassembly .. 4-14
 Scissors Arm Assembly ... 4-14
 Bushing Replacement .. 4-16
 Hand Pump ... 4-16
 Hand Pump Replacement .. 4-16
 Hand Pump O-Ring Replacement 4-16
MECHANICAL COMPONENTS

Following is a description of the major mechanical components of this scissors lift.

UNDERCARRIAGE

⚠️ CAUTION ⚠️
When steam cleaning the undercarriage, cover the battery charger and other electrical components, to prevent water damage.

Steam clean the undercarriage once a year, and inspect all welds and brackets. Check for cylinder pins that turn in their mountings, which will indicate sheared pin locks.

TIRES

Inspect the tires for cuts, chunking, sidewall damage or abnormal wear. Any tire faults MUST BE CORRECTED before further machine operation. Refer to Illustrated Parts Catalog for replacement tires.

⚠️ DANGER ⚠️
FAILURE TO USE APPROVED PARTS MAY CAUSE DEATH OR SERIOUS PERSONAL INJURY.

NOTE: Replace tires with the correct tires to maintain the rating of this equipment.

CHANGING TIRES

1. Block tires on one end of unit and raise the other end of unit.

2. Loosen and remove lug nuts, and pull wheel.

3. Install the replacement wheel.

4. Fasten lug nuts, and tighten to proper torque (see Machine Specifications).

5. Lower the machine and remove the blocks.

WHEELS AND LUG NUTS

Check the torque of the wheel lug nuts (see Machine Specification for proper torque) and examine the wheel rims for tightness and damage.

FRONT HUB ASSEMBLY

The front hub assemblies for the right and left side are identical, but should not be interchanged. Each consists of a hub, an inner and outer bearing, wheel mounting studs, and seal, as well as associated hardware.
Drive/Steer Assemblies.
REPACKING FRONT WHEEL BEARINGS

1. Block the rear tires and raise the front end of undercarriage.

2. Remove front wheels.

3. Remove dust cap.

4. Remove cotter pin and pull the front hub assembly from the spindle assembly.

5. Remove flat washer, outer cup bearing sleeve, outer bearing and outer bearing cup from each wheel hub.

6. Remove the inner bearing cup and cone.

7. Inspect the inner and outer bearing cups for wear. If they are excessively worn or damaged, replace the appropriate front hub assembly.

8. Thoroughly clean the inner and outer bearings. Inspect them for signs of wear. If they are excessively worn or damaged, replace them.

9. Pack the inner and outer bearings with grease. (Refer to lubrication chart, earlier in this manual.)

10. Assemble the front hub and install it on the spindle assembly. Install grease cap.

11. Replace the wheels and tighten to proper torque. (Refer to "Machine Specifications").

STEER CYLINDER SEAL REPLACEMENT

The steer cylinder is of the double acting type. During operation, the cylinder should not leak, but a slight dampness at the rod seal is acceptable. The pins should be checked for wear.

⚠️ CAUTION

Take care not to damage rod surface and guard against dirt entering system.

1. Disconnect and plug the two hydraulic hoses and cylinder ports.

2. Take the steer cylinder from the undercarriage by removing the two pins that hold it in place.

3. Remove rod gland.

4. Remove cylinder rod and piston.

5. Replace seals.

6. Carefully, slide the cylinder rod and piston into the cylinder body assembly.

7. Secure the rod gland in place.

8. Secure the steer cylinder in place with the two pins.

9. Unplug and reconnect the two hydraulic hoses.
Brake Assembly.
BRAKE REPAIR

This brake is a multiple disc brake.

BRAKE DISASSEMBLY

1. Remove castle nut and key from output end of spline shaft.

2. Remove bleeder screw and any other plugs or fittings from pressure ports in housing. Drain fluid from brake as thoroughly as possible.

3. With tapered end of shaft facing up, remove four socket head cap screws. A suitable holding fixture is useful to keep brake in position.

CAUTION

Since cover is under spring tension of approximately 2500 lbs., the four bolts should be loosened evenly to relieve this force. If a hydraulic press is available (5000 lbs. max.), the cover can be held in position while removing the bolts.

4. Carefully pry upwards on housing to free it from piston.

5. Remove bearing from housing only if bearing is damaged.

6. Remove plate stack assembly consisting of rotors and stators from outer spline. Be careful to avoid contaminating friction surfaces with fluid because this is a dry design brake.

7. Remove retaining ring and outer spline from shaft.

8. Carefully remove piston, making sure not to disturb spring structure.

9. Remove "o"-rings and back-up rings from piston. Care must be taken to not scratch or mar piston.

10. Before removing springs and retainer be sure to note pattern and color for reassembly purposes.

11. Remove retaining ring from shaft and press shaft out of bearing.

12. Remove retaining ring from cover and press bearing out of cover.

13. For brake models that have oil seal, remove seal from cover only if it is damaged.

14. Remove "o"-ring from cover.

BRAKE ASSEMBLY

1. Lubricate all rubber components from repair kit with clean Mobil AW32. Clean all parts thoroughly before assembling.

2. Press needle bearing, if removed, into housing from wheel side until flush with housing.

3. Install outer spline onto shaft and secure with retaining ring to form shaft assembly.

4. While supporting housing, install shaft assembly, allowing shoulder on shaft to rest on bearing.

5. Install stator disc on spline shaft assembly and alternate with remaining rotor discs and stator discs.

6. Install "o"-rings and back-up rings on piston. Be sure "o"-rings are flat and all twists are removed. Care must be taken to not scratch or mar piston.

7. Lubricate piston with Mobil AW32. Carefully push piston into bore of housing until piston bottoms on top of lining stack. Be careful to avoid contaminating friction surfaces with fluid because this is a dry design brake.
8. Install retainer and springs in piston. Be careful to install springs according to pattern and color noted during disassembly.

9. If required, press oil seal into cover. Seal lip must be facing motor side of cover. Install primary disc.

10. Install "o"-ring onto cover.

11. Position cover on housing. Install four cap screws and tighten evenly to draw cover to housing. Torque cap screws to 85-90 ft. lbs. If available, a hydraulic press will simplify installation of cover on housing. Clamp cover in position while tightening the cap screws.

12. Support brake on tapered end of shaft so that the bearing shoulder on shaft is above the bearing shoulder in cover.

13. Install bearing by pressing on inner race until bearing shoulders out on shaft.

14. Install retaining ring on shaft to retain bearing.

15. While supporting housing, allowing shaft assembly to move freely, press on outer race of bearing until it shoulders out on cover.

16. Install retaining ring into cover to retain bearing.

⚠️ CAUTION ⚠️

If hydrostatic bench testing is performed on the brake assembly, release pressure should not exceed 1000 psi (69 Bar/ 70.3 Kg/cm²), unless four additional bolts are used for supplemental clamping.

DRIVE MOTORS

The drive motors are not field repairable. If they are leaking or damaged, replace them. To remove them, the wheels must be removed before unbolting drive motors.

HOSES AND CABLE

Inspect all hoses and electrical cable for security and damage. Cable and hoses should be examined for rubbing and chafing. Check for leaks at fittings. REPLACE ANY DAMAGED HOSES OR CABLE.
PLATFORM REMOVAL

1. Raise platform about three feet (one meter) and block the arms in the raised position. Also, connect hoist to platform.

2. Disconnect all platform hydraulic hoses from the platform console, traversing deck cylinder and traversing deck position sensing valve and thread it through the access hole in the floor.

3. Remove the two (2) pins from each platform bracket at the rear of the unit.

4. Slide platform off the back end of the unit.

PLATFORM INSTALLATION

1. With scissors arms raised about three feet, slide platform onto back of machine.

2. Secure platform with pins to upper scissors arm brackets at the rear of the unit.

3. Connect all platform hydraulic hoses to the platform console by threading it through the access hole in the floor.

4. Connect hydraulic hoses to the traversing deck cylinder and traversing deck position sensing valve.

PLATFORM RAIL REPLACEMENT

To remove the railings:

1. Support the railing.

2. Remove the lock nut and hex head capscrew at each post.

3. Lift railing away.

To install the railings:

1. Support railing in position.

2. Install hex head capscrew and lock nut. Tighten hex head capscrew.

Platform Components.
TRAVERSING DECK CYLINDER REMOVAL

NOTE: The traversing deck cylinder can be removed with the platform installed or removed from the scissors arm. If traversing deck cylinder is removed with platform in position, the platform must be raised about three feet (one meter) and the scissors arm blocked in the raised position. Also, connect hoist to platform.

1. Disconnect hoses to the traversing deck cylinder.
2. Remove roll pin from the rod end cylinder pin.
3. Slide out rod end cylinder pin and any flat washers.
4. Support the cylinder.
5. Remove roll pin from base end cylinder pin.
6. Slide out base end cylinder pin.
7. Traversing deck cylinder is now free to be removed from the platform.

TRAVERSING DECK CYLINDER INSTALLATION

NOTE: The traversing deck cylinder can be installed with the platform on or removed from the scissors arm. If traversing deck cylinder is installed with platform in position, the platform must be raised about three feet (one meter) and the scissors arm blocked in the raised position. Also, connect hoist to platform.

1. Position traversing deck cylinder and support it in position.
2. Install base end cylinder pin and secure it with the roll pin.
3. Install rod end cylinder pin and secure it with roll pin. Flat washers may be added between cylinder and cylinder mounting ears to avoid end play.

TRAVERSING DECK CYLINDER SEAL REPLACEMENT

1. Remove traversing deck cylinder.

[CAUTION]

Take care not to damage rod surface. Guard against dirt entering the system.

2. Remove end gland from cylinder.
3. Remove cylinder shaft and piston.
4. Remove seals.
5. Replace traversing deck cylinder seals.
6. Replace cylinder shaft and piston.
7. Secure end gland to cylinder.
8. Replace traversing deck cylinder in the unit.
LIFT CYLINDER REMOVAL

1. Support extended scissors arm assembly.
2. Disconnect hoses to the lift cylinder.
3. Remove retaining pins and rod end pivot pin, and rest rod end of lift cylinder.
4. Remove retaining pins and base end pivot pin. There is a spacer and washer on each side of the base end of the cylinder.
5. The lift cylinder is now free to be removed from the unit.

LIFT CYLINDER INSTALLATION

NOTE: Scissors arm assembly must be installed in the unit to perform this procedure.

1. Support extended scissors arm assembly.
2. Slide base end of lift cylinder into position and secure it in place with pivot pin and retaining pins. Ensure that spacers and washers are in place.
3. Reconnect hoses.
4. Slide rod end of lift cylinder into position and secure it in place with pivot pin and retaining pins.

SCISSORS LIFT CYLINDER SEAL REPLACEMENT

1. Remove scissors lift cylinder.

⚠️ CAUTION

Take care not to damage rod surface. Guard against dirt entering the system.

2. Remove end gland from lift cylinder.
3. Remove cylinder shaft and piston.
4. Remove seals.
5. Replace scissors lift cylinder seals.
6. Replace cylinder shaft and piston.
7. Secure end gland to lift cylinder.
8. Replace scissors lift cylinder in the unit.

Lift Cylinder Seals.
SCISSORS

Clean the scissors once a year and inspect along the scissors structure, especially welds and brackets.

SCISSORS ARM REMOVAL

1. Remove platform. (See Platform Removal.)
2. Disconnect hoses and cable between scissors arms and undercarriage.
3. Remove both lift cylinders and hoses. (See Lift Cylinder Removal.)
4. Grind out welded front bottom scissors arm roller pins and remove pins and rollers.
5. Remove retaining pins from rear bottom scissors arm and remove pivot pins.
6. Lift off scissors arm assembly with a hoist.
7. Remove retaining pins from rear bottom scissors arm and remove pivot pins.
8. Carefully, grind out one set of rear scissors arm ears welded to the undercarriage.
9. Install the set of scissors arm ears removed in step 8 onto rear bottom scissors arm.
10. Lower the scissors arm assembly in place and secure it to the remaining set of scissors arm ears.
11. Align scissors arm to undercarriage.
 a. At the rear, the lower scissors arm outer tube must align with the outer frame rail.
 b. At the front, the rollers must fit squarely with the chassis frame and roller track.
12. Tack weld scissors arm ears removed in step 8.
13. Remove retaining pins from rear bottom scissors arm and remove pivot pins.
14. Lift rear of scissors arm assembly, and finish welding scissors arm ears in place.
15. Lower rear of scissors arm assembly, and install pivot pins and retaining pins onto rear bottom scissors arm and scissors arm ears.
16. Weld roller arm pins in place.
17. Install lift cylinders and platform. (See Lift Cylinder Installation and Platform Installation.)
18. Connect hoses and cable between scissors arms and undercarriage.

If scissors arm is NOT aligned with the undercarriage, proceed to step 6.
Scissors Arm Removal/Installation.

Scissors Arm Roller (Front)

Rear Scissors Arm Ear Set

Bottom Scissors Arm

Retaining Ring

Pivot Pin (Rear)

Scissors Arm Roller Pin

Bushing

Undercarriage

Art # ACS.05006E

October 1995
SCISSORS ARM DISASSEMBLY

There are four sets of arms that comprise the vertical lifting mechanism. Each set is to be replaced as a pair. If one scissors pin or bushing is suspect, check all pins and bushings for wear or damage.

1. Remove platform from scissors arms. (Refer to Platform Removal in this section.)

2. Remove scissors arms from undercarriage. (Refer to Scissors Arm Removal in this section.)

3. Remove electrical cables and corresponding hardware from scissors arm assembly.

4. Lower the scissors arm assembly with a hoist.

5. Grind out tack welds on segment 4 outer scissors arm antirotator block that secure arm to arm connecting pin.

6. With a hoist, raise scissors arms for access to retaining clips.

7. Remove retaining clips and remove arm to arm connecting pin.

8. Remove center cross pin and center pin.

9. With a hoist, lift off segment 4 outer scissors arm.

10. Raise the scissors arm assembly with a hoist.

11. Grind out tack welds on segment 4 inner scissors arm antirotator block that secure arm to arm connecting pin.

12. Remove retaining clips and remove arm to arm connecting pin.

13. Remove center cross pin and remove center pin.

14. With a hoist, lift off segment 4 inner scissors arm.

15. Repeat steps 4 through 14 to disassemble segment 3 scissors arm. For ease of disassembly remove the outer scissor arm and then remove the inner scissor arm.

16. Repeat steps 4 through 14 to disassemble segment 2 scissors arm. For ease of disassembly remove the outer scissor arm and then remove the inner scissor arm.

17. Remove center cross pin and remove center pin from segment 1 scissors arm.

18. Remove retaining pins from rear inner scissors arm (segment 1) and remove pivot pins. Then, lift it off with a hoist.

SCISSORS ARM ASSEMBLY

NOTE: For ease of assembly, coat all pins with a thin coat of a high viscosity oil.

1. Inspect all pins for wear or damage.

- If any scissors arm is damaged or worn, it is necessary to replace inner and outer arms as a set.

2. Assemble each segment of the scissors arms by inserting center pin through the outer and inner scissors arms, and secure them in place with center cross pin.

3. Block segment 1 in a slightly raised position.

4. With a hoist, position segment 2 over segment 1, and insert arm to arm connecting pins for both the inner and outer scissors arms. Also, install retaining clips onto the pins.

5. Tack weld the hex head of the pin to the antirotator blocks.

6. Block segment 2 in a slightly raised position.
Scissor Arm Assembly.
7. With a hoist, position segment 3 over segment 2, and insert arm to arm connecting pins for both the inner and outer scissors arms. Also, install retaining clips onto the pins.

8. Tack weld hex head of the pin to the antirotator blocks.

9. Block segment 3 in a slightly raised position.

10. With a hoist, position segment 4 over segment 3, and insert arm to arm connecting pins for both the inner and outer scissors arms. Also, install retaining clips onto the pins.

11. Tack weld hex head of the pin to the antirotator blocks.

BUSHING REPLACEMENT

1. Disassemble the scissors. (See Scissors Arm Disassembly.)

2. Remove fiberglide bushings with bushing driver.

3. Replace fiberglide bushings with bushing driver.

4. Reassemble the scissors and grease the bushings (refer to Lubrication Chart).

HAND PUMP

The hand pump is part of the brake release manifold and may be replaced if damaged or have o-rings replaced.

![Hand Pump Diagram]

Brake Release Manifold.

HAND PUMP REPLACEMENT

- Screw out the hand pump.
- Screw in the new hand pump.

HAND PUMP O-RING REPLACEMENT

1. Remove the hand pump from the brake release manifold.

2. Remove the bad o-ring(s).

3. Install the new o-ring(s).

4. Install the hand pump in the brake release manifold.
SECTION: 5
TROUBLESHOOTING
Table of Contents

General Troubleshooting Tips ... 5-3
Troubleshooting Chart .. 5-4

Index to Troubleshooting Chart

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Drive function - none</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td>Drive motor failure</td>
<td>5-10</td>
</tr>
<tr>
<td></td>
<td>Drives forward, but not reverse</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td>Drives reverse, but not forward</td>
<td>5-9</td>
</tr>
<tr>
<td>H</td>
<td>High speed drive with scissors lowered - none</td>
<td>5-10</td>
</tr>
<tr>
<td></td>
<td>Hydraulic fluid darkens</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Hydraulic functions slow</td>
<td>5-7</td>
</tr>
<tr>
<td>L</td>
<td>Lift function - none</td>
<td>5-12</td>
</tr>
<tr>
<td></td>
<td>Lift cylinders drift down</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Lower function - none</td>
<td>5-12</td>
</tr>
<tr>
<td>P</td>
<td>Parking brake doesn’t engage</td>
<td>5-11</td>
</tr>
<tr>
<td></td>
<td>Parking brake doesn’t release</td>
<td>5-10</td>
</tr>
<tr>
<td></td>
<td>Parking brake drags</td>
<td>5-11</td>
</tr>
<tr>
<td></td>
<td>Parking brake slips</td>
<td>5-11</td>
</tr>
<tr>
<td></td>
<td>Pitting and etching of pump gear</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Premature pump failure</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Pump case turns brown</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Pump, catastrophic failure</td>
<td>5-5</td>
</tr>
<tr>
<td></td>
<td>Pump gear wear</td>
<td>5-5</td>
</tr>
<tr>
<td></td>
<td>Pump noise or squeal</td>
<td>5-7</td>
</tr>
<tr>
<td></td>
<td>Pump output - none</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Pump pressure, excessive</td>
<td>5-7</td>
</tr>
<tr>
<td></td>
<td>Pump pressure - loss</td>
<td>5-5</td>
</tr>
<tr>
<td>S</td>
<td>Spools stick</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>Steer function - none</td>
<td>5-7</td>
</tr>
<tr>
<td></td>
<td>Steer function - none; all other functions operate</td>
<td>5-8</td>
</tr>
<tr>
<td>T</td>
<td>Traversing deck function - none</td>
<td>5-12</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING TIPS

Before investigating a malfunction, check the following items:

- Check that battery connections are secure and battery is fully charged.
- Check that the Emergency Stop Button is released (pulled up).
- Check that hydraulic fluid is at the correct level.
- Check that the Emergency Lowering Valve is in normal operation position.
- Check that the Motor Release Valve is closed.
- Check that the Break Release Valve is open.
- Check that the Circuit Breaker is in the "ON" position.

Common Causes of Hydraulic System Malfunctions:

- Incompatible hydraulic fluids mixed, destroying the additives and causing varnish build up resulting in the valves to stick.
- Water in the hydraulic fluid due to a damp climate.
- Improper hydraulic fluid used; viscosity too high cold climates, viscosity too low warm climates.

NOTE: Mobil AW32 is a multiple viscosity oil that is light enough for cold climates and resists thinning in warm climates.
TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Excessive heat will cause abnormal wear on seals and metal parts due to lowered viscosity. Symptoms to watch for are: pump case turns brown, hydraulic fluid darkens and premature pump failure.</td>
<td>1. Excessive water in the hydraulic fluid.</td>
<td>1. Drain and flush hydraulic system. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td></td>
<td>2. Improper oil viscosity.</td>
<td>2. Replace hydraulic fluid with the correct fluid. See Section 2, Fluid Recommendations.</td>
</tr>
<tr>
<td></td>
<td>3. Improper lubrication and hydraulic fluid.</td>
<td>3. Drain and flush hydraulic system. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td>• Water in hydraulic fluid. Symptoms to watch for are: pitting and etching of pump gear causing heat build up and premature pump failure.</td>
<td>1. Damp climate or condensation in the reservoir.</td>
<td>1. Drain and flush hydraulic system. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td></td>
<td>2. Hydraulic fitting or port open to contaminants.</td>
<td>2. Drain and flush hydraulic system. See Section 2, System Flushing Procedure. Replace worn pump.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Illustrated Parts Catalog.</td>
</tr>
<tr>
<td>• Varnish, the dark brownish residue left from oxidation of hydraulic fluids. Symptoms to watch for are: residue will cause spools to stick and will hang up moving parts with close tolerances.</td>
<td>1. Incompatible fluids or poor quality fluids.</td>
<td>1. Drain and flush hydraulic system, then fill with recommended hydraulic fluid. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td></td>
<td>2. Excessive heating of the fluids.</td>
<td>2. Drain and flush hydraulic system, then fill with recommended hydraulic fluid. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>• Poor lubrication, parts break through lubricant causing metal to metal contact. Symptoms to watch for are: pump gear wear and excessive heat build up.</td>
<td>1. Hydraulic fluid viscosity low.</td>
<td>1. Drain and flush hydraulic system, then fill with recommended hydraulic fluid. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td></td>
<td>2. Improper or poor grade hydraulic fluid or lubricant without proper anti-wear additives.</td>
<td>2. Drain and flush hydraulic system, then fill with recommended hydraulic fluid and lubricant. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td>• Cavitation, a gaseous condition within the fluid stream where the pressure is reduced to the vapor pressure of the fluid. The higher the system pressure the more violent the reaction will be. Symptoms to watch for are: catastrophic pump failure or loss of pump pressure.</td>
<td>1. Low reservoir fluid level.</td>
<td>1. Add hydraulic fluid. See Section 2, Fluid Recommendations.</td>
</tr>
<tr>
<td></td>
<td>2. Air leaks in suction strainer and line.</td>
<td>2. Tighter hose clamps on suction line. Check fittings for tightness. Check shutoff valve.</td>
</tr>
<tr>
<td></td>
<td>3. Improper hydraulic fluid.</td>
<td>3. Have fluid analyzed regularly and drain and flush hydraulic system, then fill with recommended hydraulic fluid. See Section 2, System Flushing Procedure.</td>
</tr>
<tr>
<td></td>
<td>4. Vaporization of water.</td>
<td>4. Have fluid analyzed regularly and drain and flush hydraulic system, then fill with recommended hydraulic fluid. See Section 2, System Flushing Procedure.</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING CHART (CONTINUED)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift cylinders drift down.</td>
<td>1. Holding valve faulty.</td>
<td>1. Replace holding valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>2. Cylinder packing is damaged.</td>
<td>2. Replace cylinder packing. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>3. Emergency lowering valve.</td>
<td>3. Replace emergency lowering valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td>No pump output.</td>
<td>1. Broken pump drive shaft.</td>
<td>1. Replace pump. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>2. Fluid leaks.</td>
<td>2. Tighten hose clamps at pump inlet.</td>
</tr>
<tr>
<td></td>
<td>3. Engine not running.</td>
<td>3. Check engine operation.</td>
</tr>
<tr>
<td></td>
<td>4. Engine relay not engaging.</td>
<td>4. Check engine circuitry.</td>
</tr>
</tbody>
</table>

- Check for proper engine relay operation and replace if broken. See Electrical and Continuity Checks, Section 3.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic functions slow.</td>
<td>1. Low pressure.</td>
<td>1. Check for low system pressure and adjust to correct pressure. Refer to Pressure Relief Valve in Section 2.</td>
</tr>
<tr>
<td></td>
<td>2. Pump component failure.</td>
<td>2. Replace pump. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>3. Slow engine speed.</td>
<td>3. Check engine speed.</td>
</tr>
<tr>
<td></td>
<td>4. Damaged pump.</td>
<td>4. Replace pump. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td>Excessive pump pressure.</td>
<td>• Main relief valve.</td>
<td>• Readjust main relief valve. See Pressure Relief Valve in Section 2.</td>
</tr>
<tr>
<td>Pump noise or squeal.</td>
<td>1. Low pressure.</td>
<td>1. Check for low system pressure and adjust for correct pressure. See Pressure Relief Valve in Section 2.</td>
</tr>
<tr>
<td></td>
<td>2. Pump cavitation.</td>
<td>2. Check hydraulic reservoir oil level.</td>
</tr>
<tr>
<td>No steer function.</td>
<td>1. Steer valve not shifting.</td>
<td>1. See Steer Valve in Section 2. Replace valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>2. Faulty relief valve.</td>
<td>2. See Pressure Relief Valve in Section 2.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>• Unit will not steer; all other functions operate.</td>
<td>1. Mechanical malfunction.</td>
<td>1. Steer cylinder may not be mechanically connected to steering linkage. Check for disconnected or damaged steering linkage; connect steering linkage and/or replace. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>2. Steer valve not shifting.</td>
<td>2. See Steer Valve in Section 2. Replace valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>3. Faulty relief valve.</td>
<td>3. See Pressure Relief Valve in Section 2.</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING CHART (CONTINUED)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No drive function.</td>
<td>1. Drive valve not shifting.</td>
<td>1. See Drive Valve in Section 2. Replace valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>2. Brake cylinder does not release.</td>
<td>2. Check pressure supply to brake cylinder. Install gauge in line at brake cylinder. If no pressure, consult factory.</td>
</tr>
<tr>
<td></td>
<td>3. Motor shaft key is sheared.</td>
<td>3. Inspect, repair or replace. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>4. Faulty relief valve.</td>
<td>4. See Pressure Relief Valve in Section 2.</td>
</tr>
<tr>
<td>- Drives forward, but not reverse.</td>
<td>- Faulty drive valve.</td>
<td>- See Drive Valve in Section 2. Replace valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>- Faulty drive controller.</td>
<td>- Check for variable output (0-8 VDC) of controller and that microswitch in forward is operational.</td>
</tr>
<tr>
<td>- Drives reverse, but not forward.</td>
<td>- Faulty drive valve.</td>
<td>- See Drive Valve in Section 2. Replace valve. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>- Faulty drive controller.</td>
<td>- Check for variable output (0-8 VDC) of controller and that microswitch in reverse is operational.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>2. Wheel drive motor.</td>
<td>• Check that the hydraulic system has been flushed after component failure in the drive system.</td>
</tr>
<tr>
<td></td>
<td>3. Motor shaft key sheared.</td>
<td>• Check that the correct grade of hydraulic fluid is used. See Fluid Recommendations, Section 2.</td>
</tr>
<tr>
<td>• Unit will not go into high speed drive with platform lowered.</td>
<td>• Faulty low speed drive valve or limit switch.</td>
<td>2. Wheel drive motor failure; replace motor. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td>• Parking brake doesn’t release.</td>
<td>1. Faulty motion control valve with brake shuttle.</td>
<td>3. Check and replace if failed. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>2. Brake cylinder piston seal leaking or bad "o"-rings.</td>
<td>1. Replace motion control valve with brake shuttle. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td></td>
<td>3. Pressure reducing valve pressure set too low.</td>
<td>2. Check brake cylinder for piston seal leakage. Replace as necessary. Refer to Section 4.</td>
</tr>
<tr>
<td></td>
<td>4. Discs frozen.</td>
<td>3. Refer to Pressure Reducing Valve, Section 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Replace disc stack Refer to Section 4.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Parking brake doesn’t engage.</td>
<td>1. Brake cylinder spring failure.</td>
<td>1. Check brake cylinder for broken spring. Repair or replace as necessary. Refer to Mechanical Components, Section 4.</td>
</tr>
<tr>
<td></td>
<td>2. Plugged brake control needle valve or out of adjustment.</td>
<td>2. Clean needle valve or replace as necessary. Refer to Illustrated Parts Catalog.</td>
</tr>
<tr>
<td>Brake slips.</td>
<td>1. Brake flow control not open enough.</td>
<td>1. Adjust valve. Refer to Flow Control Valve, Section 2.</td>
</tr>
<tr>
<td></td>
<td>2. Oil in brake if designed for dry use.</td>
<td>2. Replace oil seal in brake. Check motor seal. Check piston seals. Internal components will need to be inspected, cleaned and replaced as required. Refer to Section 4.</td>
</tr>
<tr>
<td></td>
<td>3. Disc plates worn.</td>
<td>3. Check disc thickness.</td>
</tr>
<tr>
<td></td>
<td>4. Springs broken or have taken a permanent set.</td>
<td>4. Check release pressure.</td>
</tr>
<tr>
<td>Brake drags.</td>
<td>1. Pressure reducing valve set to low.</td>
<td>1. Adjust valve. Refer to Pressure Reducing Valve, Section 2.</td>
</tr>
<tr>
<td></td>
<td>2. Bearing failure.</td>
<td>2. Replace bearing. Refer to Section 4.</td>
</tr>
<tr>
<td></td>
<td>3. Oil in brake.</td>
<td>3. Drain oil and refill as specified for brakes. Switch to flow thru cooling.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>No lift function.</td>
<td>1. Possibly plugged lines, cylinder ports or damaged cylinder packings. 2. Main relief pressure setting too low. 3. Lift valve stuck in closed position or not getting voltage to open. 4. Proportional drive compensator is faulty.</td>
<td>1. Inspect, repair or replace cylinder. Refer to Illustrated Parts Catalog. 2. Adjust system pressure. See Pressure Relief Valve in Section 2. 3. See Lift Valve in Section 2. Refer to Illustrated Parts Catalog. 1. See Proportional Drive Compensator Valve in Section 2.</td>
</tr>
<tr>
<td>No lower function.</td>
<td>1. Faulty lift valve. 2. Descent needle valve is closed or open too far causing velocity fuse to close. 3. Faulty lift holding valve 4. Faulty velocity fuse.</td>
<td>1. See Lift Valve in Section 2. Replace valve. 2. Check needle valve or replace as necessary. Refer to Illustrated Parts Catalog. 3. Replace lift holding valve. Refer to Illustrated Parts Catalog 4. Replace velocity fuse. Refer to Mechanical Components, Section 4.</td>
</tr>
<tr>
<td>No traversing deck function.</td>
<td>1. Possibly plugged lines, cylinder ports or damaged cylinder packings. 2. Main relief pressure setting too low. 3. Traversing deck valve stuck in open position or not getting voltage.</td>
<td>1. Inspect, repair or replace cylinder. Refer to Illustrated Parts Catalog. 2. Adjust system pressure. See Pressure Relief Valve in Section 2. 3. Check valve coil for voltage. Refer to Illustrated Parts Catalog.</td>
</tr>
</tbody>
</table>
SECTION 6:
MAINTENANCE
Table of Contents, Section 6

General Maintenance Tips ... 6-3
 Unpowered Raising of Platform 6-4
 First Three Months of Operation 6-4
Maintenance Schedule .. 6-5
 Shift Service ... 6-5
 Weekly Service ... 6-5
 Monthly Service ... 6-6
 Semi-Annual Service .. 6-6
 Annual Service ... 6-6
 Four Year Interval Service 6-7
Shift Operational Checklist .. 6-8
Weekly Operational Checklist 6-10
Monthly Operational Checklist 6-11
Semi - Annual Operational Checklist 6-13
MAINTENANCE

The Simon Scissors Lift is designed to require a minimum amount of maintenance. However, it is essential that the specified services be performed at the indicated intervals, and that the instructions contained in this manual are followed to ensure safety and reliability.

⚠️ DANGER

DEATH OR SERIOUS INJURY MAY RESULT IF MACHINE IS OPERATED IN AN UNSAFE CONDITION. DO NOT OPERATE ANY MACHINE IF IN UNSAFE OPERATING CONDITION.

GENERAL MAINTENANCE TIPS

⚠️ WARNING

IMMEDIATELY REPORT TO YOUR SUPERVISOR ANY DEFECT OR MALFUNCTION WHICH BECOMES EVIDENT DURING OPERATION. ANY DEFECT THAT AFFECTS THE SAFETY OF OPERATORS OR NEARBY PERSONNEL SHALL BE REPAIRED PRIOR TO CONTINUED USE OF THE WORK PLATFORM.

Correct lubrication is an essential part of preventive maintenance to minimize wear on working parts and ensure against premature failure. By maintaining correct lubrication, the possibility of mechanical failure and resulting downtime is reduced to a minimum.

⚠️ WARNING

HYDRAULIC FLUID UNDER PRESSURE IS HOT, AND CAN PENETRATE AND BURN THE SKIN, DAMAGE EYES, AND MAY CAUSE SERIOUS INJURY, BLINDNESS, AND EVEN DEATH. CORRECT LEAKS IMMEDIATELY.

FLUID LEAKS UNDER PRESSURE MAY NOT ALWAYS BE VISIBLE.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, WITHIN A FEW HOURS, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY.

ALWAYS CLEAN UP HYDRAULIC FLUIDS AND LUBRICATING OILS SPILLED ON THE UNIT. SPILLS CAN CAUSE FALLS, AND ARE A SERIOUS FIRE HAZARD.

The actual operating environment of the machine governs the inspection schedule. The following operational checklists indicate the areas of the machine to be checked and the intervals at which they should be checked under normal operating conditions.

Regular inspection and conscientious maintenance is the key to efficient economical operation. It will help to assure that your equipment will perform satisfactorily with a minimum of service and repair.
DANGER

NEVER PERFORM SERVICE ON THE UNIT (WITH PLATFORM ELEVATED) WITHOUT FIRST BLOCKING THE ELEVATING ASSEMBLY IN PLACE!

- ALWAYS clean the surrounding area before opening hydraulic components.

- Never open a hydraulic system when there are contaminants in the air.

- Never leave hydraulic components or hoses open. They must be protected from contamination (including rain) at all times.

- Use only recommended lubricants (see Lubrication Chart in front of this manual). Improper lubricants or incompatible lubricants may be as harmful as no lubrication.

- Watch for makeshift "fixes" which can jeopardize safety as well as lead to more costly repairs.

- Any work platform found not to be in safe operating condition should be removed from service until repaired. All repairs should be made by authorized personnel in conformance with the manufacturer's operating, maintenance and repair manuals.

UNPOWERED RAISING OF PLATFORM

To repair or maintain many of the parts on the undercarriage, it is necessary to raise the platform. This procedure is to be followed in the event that the hydraulics don't raise the platform. The unit is not field repairable in this case.

1. Secure platform to an overhead lifting device with strap.

2. Raise the platform with an overhead lifting device.

FIRST THREE MONTHS OF OPERATION

As with any new machine, minor fluid leaks may occur until the various hydraulic components and pipe fittings are fully seated.

It is particularly important that, for the first three months of operation, all hydraulic components, hoses and pipe fittings be checked regularly for leaks and tightness, and corrective action taken as required.

Correction of minor fluid leaks and general tightening of machine components during this initial period are not considered as reimbursable expenses under the Simon Limited Warranty.

The hydraulic pump, electric motor, cylinders and pressure valves are self-lubricating.
ROUTINE SERVICING

NOTE: The following recommendations are based on advice of our component suppliers, and the requirements of various safety regulations. They should be followed with discretion based on factors such as amount and type of machine usage, environmental conditions, and local safety regulations.

IMPORTANT: Make certain that the unit is inspected per the operational checklists at the end of this section.

SHIFT SERVICE

Hydraulic System

Before checking the hydraulic fluid level, ensure that the scissors arms are stowed in the traveling position, and the machine is standing on level ground. Fluid level must be to full mark on the sight gauge, located on the side of tank. Refer to Lubrication Chart for correct grade of hydraulic fluid.

Ensure that the filler cap is secure to prevent entry of water or other impurities into the tank.

Tire Condition

Check that the tires are not damaged.

Platform Rails and Safety Gate

Check security of platform rails and safety gate.

Batteries

Check battery electrolyte level and connections.

Steering

Check the steering cylinder for fluid leakage. Inspect steering linkage for signs of wear.

Pivot Pins

Examine all pivot pins on scissors arms and cylinders to ensure that they are positively secured in position.

Test All Machine Systems

Test the operation of the drive assembly, including drive motor and steering.

Test the operation of the lift/ lower functions.

Test the operation of the traversing deck function.

Checklist

Perform all items on the Shift Checklist found later in this section.

WEEKLY SERVICE

Hydraulic System

Pressurize the hydraulic circuit and inspect the system for any signs of leakage, particularly at flexible hoses, connections and hydraulic components.

Checklist

Perform all items on the Weekly Checklist found later in this section.
MONTHLY SERVICE

Hydraulic System

Check hydraulic fluid color. If the hydraulic fluid does not appear clear amber, but has a cloudy appearance, it is usually an indication that water is present. A dark brown color, accompanied by a strong "burnt" smell, indicates that the fluid has overheated. If either condition occurs, a complete hydraulic fluid and filter change will be necessary.

The cause of hydraulic fluid deterioration should be investigated and rectified. Have fluid analyzed by a qualified laboratory.

Chassis Bolts

Check all bolts for signs of looseness. Refer to individual items in the Monthly Checklist.

Cylinders

Check all cylinders for hydraulic fluid leakage.

Pivot Pins and Grease Fittings

Lubricate all pivot pins and grease fittings.

Platform Mounting

Check that platform weldments and platform frame members are in good condition.

Checklist

Perform all items on the Monthly Checklist found later in this section.

SEMI-ANNUAL SERVICE

Lift Cylinders

Fully lower, then raise the platform. At each extreme position, check that there is no movement between cylinder rod and bearing housing, or between cylinder cap and tube.

Hydraulic Filter

Replace hydraulic filter element.

Checklist

Perform all items on the Semi-Annual Checklist found later in this section.

ANNUAL SERVICE

NOTE: Machine Annual Inspection Report Forms are available from Simon.

Flexible Hoses

Inspect all hoses over their complete length. Replace any hoses showing looseness or corrosion at end fittings. Replace hoses with cracking, blistering or excessive wear of outer protective covering.

Hydraulic Fluid

If the hydraulic system has been properly maintained, the fluid should only need to be changed once each year. This, of course, will depend on machine application, amount of use, temperature, atmospheric conditions and other factors.
Hydraulic Fluid Tank

Carefully check the condition of the fluid inside the tank to ensure that it flows easily and is of clear, amber color. In cases of gross contamination, it will be necessary to completely drain and refill the entire hydraulic system.

Place a suitable waste oil container under the drain tap, or attach a suitable hose from the drain tap to the container.

Open the drain tap, and completely drain the fluid from the tank.

Clean or replace the suction hose, and close the drain tap. Refill the tank to the correct level.

Structural Examination

A thorough examination of the machine should be carried out for signs of corrosion, misalignment, material fractures, and other damage. Particular attention should be given to the condition of welded joints.

FOUR YEAR INTERVAL SERVICE

Pivot Pins and Bearings

Remove all pivot pins for examination. Check the pivot pin bearings with the pivot pins removed. Replace with the correct type of pins and bearings, as necessary.
SHIFT OPERATIONAL CHECKLIST

All checks must be completed before operation of the Simon SCISSORS.

DATE ___________________ INSPECTED BY ___________________

MODEL NUMBER __________ SERIAL NUMBER _______________

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon Scissors clean!!

WARNING

THIS CHECKLIST MUST BE USED AT THE BEGINNING OF EACH SHIFT.
FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR.
ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE
MUCH MORE THAN IT COSTS.

INITIAL DESCRIPTION

_______ 1. Perform a visual inspection of all machine components, i.e. missing
 parts, torn or loose hoses, hydraulic fluid leaks, torn or disconnected
 wires, damaged tires etc. Replace components as necessary.

_______ 2. Check the hydraulic fluid level with the platform fully lowered.

_______ 3. Check the tires for damage. Check wheel lug nuts for tightness.

_______ 4. Check the tire pressure (not required for foam filled tires).

_______ 5. Check the hoses and the cables for worn areas or chafing.

_______ 6. Check the platform rails and the safety chains for damage.

_______ 7. Check the pivot pins for security.

_______ 8. Check that all warning and instructional labels are legible and secure.

_______ 9. Inspect the platform control panel. Insure the load capacity is clearly
 marked.

Continued on following page . . .

Page 6-8
SHIFT OPERATIONAL CHECKLIST (CONTINUED)

INITIAL DESCRIPTION

10. Check the hydraulic system pressure.

11. Check the ground controls for proper operation. Check all switches and push buttons for proper operation.

12. Check the platform controls for proper operation. Check all switches and push buttons, as well as insuring that the drive controller returns to neutral.

13. Follow the engine daily service requirements. Refer to the engine maintenance manual supplied with your machine.

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

INITIAL DESCRIPTION

14. Remove debris from electrical controls and hydraulic components.

15. Check the hydraulic system for leakage after every eight (8) hours of operation.

16. Inspect the cylinder boots and the controller boot for cuts or other damage. Repair or replace as required.

17. Follow the engine severe usage service. Refer to the engine maintenance manual supplied with your machine.
WEEKLY OPERATIONAL CHECKLIST

All checks must be completed before operation of the Simon SCISSORS.

DATE ________________________ INSPECTED BY ________________________

MODEL NUMBER ______________ SERIAL NUMBER ______________

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon SCISSORS clean!!

WARNING

THIS CHECKLIST MUST BE USED WEEKLY. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

INITIAL DESCRIPTION

__________ 1. Perform all checks listed on Shift Operational Checklist.

__________ 2. Check wheel lug nuts for proper torque (refer to the Machine Specifications).

__________ 3. Inspect all arms and pivot points for signs of wear and/or damage.

__________ 4. Check the general operation.

__________ 5. Check all wire connections.

__________ 6. Follow the engine weekly service requirements. Refer to the engine maintenance manual supplied with your machine.

__________ 7. Check battery electrolyte level and connections.

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

INITIAL DESCRIPTION

__________ 8. Inspect the condition of hydraulic fluid in the reservoir. Oil should have a clear amber color.

__________ 9. Lubricate all steering linkages and pivot points (see Lubrication Chart).
MONTHLY OPERATIONAL CHECKLIST

All checks must be completed before operation of the Simon SCISSORS.

DATE ____________________________ INSPECTED BY ____________________________

MODEL NUMBER __________________ SERIAL NUMBER ____________________________

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon Scissors clean!!

WARNING

THIS CHECKLIST MUST BE USED MONTHLY. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

INITIAL \ DESCRIPTION

________ 1. Perform all checks listed on Shift and Weekly Operational Checklists.

________ 2. Lubricate all steering linkages and pivot points (see Lubrication Chart).

________ 3. Lubricate the scissors arm roller and pivot ears (see Lubrication Chart).

________ 4. Inspect the condition of hydraulic fluid in the reservoir. Oil should have a clear amber color.

________ 5. Inspect the entire machine for signs of damage, broken welds, loose bolts, improper or makeshift repairs.

________ 6. Check the electric motor brushes.

________ 7. Check the pin joints and retaining bolts for security.

________ 8. Check the hydraulic system pressure.

________ 9. Check the left and the right spindles for free turning with no end play.

________ 10. Tires leaning in or out.

Continued on following page . . .
MONTHLY OPERATIONAL CHECKLIST (CONTINUED)

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11. Check that all adjustable flow valves are locked. Check setting if any are not locked.</td>
</tr>
<tr>
<td></td>
<td>12. Follow engine monthly service requirements. Refer to the engine maintenance manual supplied with your machine.</td>
</tr>
<tr>
<td></td>
<td>13. Check that the platform does not drift down with a full load.</td>
</tr>
</tbody>
</table>

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14. After 90 days change high pressure filter element. If equipped with outriggers or stabilizers.</td>
</tr>
</tbody>
</table>
SEMI - ANNUAL OPERATIONAL CHECKLIST

All checks must be completed before operation of the Simon SCISSORS.

DATE ___________________ INSPECTED BY ___________________

MODEL NUMBER ____________ SERIAL NUMBER ________________

GENERAL INFORMATION
1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon Scissors clean!!

⚠️ WARNING

THIS CHECKLIST MUST BE USED AT SIX MONTH INTERVALS. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

INITIAL DESCRIPTION

_______ 1. Perform all checks listed on Shift, Weekly and Monthly Operational Checklists.

_______ 2. Have a hydraulic fluid sample analyzed at a test laboratory. Comply with the test results and recommendations to ensure long, trouble free operation.

 IMPORTANT: If hydraulic fluid has been regularly maintained, it should only require changing once every year, depending on maintenance, temperature, application, duty cycle, and atmospheric conditions.

_______ 3. Check the hydraulic system for leaks, examine hoses for signs of excessive wear, chafing or twisting. Replace worn hoses if necessary.

_______ 4. Check the hydraulic system pressure. If the pressure is low, determine the reason and repair in accordance with accepted procedures as outlined in the service manual.

_______ 5. Inspect the platform structure for damage and condition of welds.

_______ 6. Check the operating speeds to insure they are within specified limits.

Continued on following page . . .
<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7. Check the emergency lowering system.</td>
</tr>
<tr>
<td></td>
<td>8. Clean and lubricate all push button switches with dry lubricant and insure that the switches operate freely in all positions.</td>
</tr>
<tr>
<td></td>
<td>9. Check the tightness of the platform frame and the linkage pins.</td>
</tr>
<tr>
<td></td>
<td>10. Check the overall platform stability.</td>
</tr>
<tr>
<td></td>
<td>11. Check the electrical mounting and hardware connections for security.</td>
</tr>
<tr>
<td></td>
<td>12. Replace the filter element.</td>
</tr>
<tr>
<td></td>
<td>13. Repack the front wheel bearings (if tow wheel crive).</td>
</tr>
<tr>
<td></td>
<td>14. Check the king pins for excessive play.</td>
</tr>
</tbody>
</table>
INDEX
Index

B
Battery .. 3-3
Battery Charger 3-4
Battery Charger Troubleshooting 3-5
Battery Maintenance (In Storage) 3-3
Battery Maintenance (In Use) 3-3
Battery Preventive Maintenance 3-4
Battery Replacement 3-4
Brake Assembly 4-7
Brake Disassembly 4-7
Brake Repair 4-7
Bushing Replacement 4-16

C
Chassis Components viii
Checklist, Monthly Operational 6-11
Checklist, Semi-Annual Operational 6-13
Checklist, Shift Operational 6-8
Checklist, Weekly Operational 6-10
Crane Lifting of the Scissors Lift 1-4

D
Descent Alarm 3-6
Drive Motors .. 4-6
Drive/Steer System 2-7

E
Electrical System 3-3
Emergency Lowering 1-6
Emergency Procedures 1-6
Emergency Stop Buttons 3-6
Emergency System and Procedures 1-6

F
Fork Lifting of the Scissors Lift (Optional) 1-3
Front Hub Assembly 4-3
Front Wheel Bearings, Repacking 4-5

H
Hand Pump .. 4-16
Hand Pump Oil Replacement 4-16
Hand Pump Replacement 4-16
Hoses and Cable 4-8
Hydraulic Drive Motors 2-7
Hydraulic Fluid 2-3
Hydraulic Fluid Analysis 2-3
Hydraulic Fluid Handling Precautions 2-3
Hydraulic Fluid Recommendations 2-3
Hydraulic Fluid Reservoir Assembly 2-6
Hydraulic Pump 2-6
Hydraulic System Flushing Procedure 2-4
Hydraulic System Functional Description 2-5

I
Introduction iv

L
Lift Cylinder Installation 4-11
Lift Cylinder Removal 4-11
Lift Cylinders .. 2-8
Lift System .. 2-8
Lubrication Chart xii
Lubrication Diagram xiii

M
Machine Specifications vi
Maintenance .. 6-3
Maintenance Tips, General 6-3
Manifold, 4 Station 2-6
Mechanical Components 4-3
Movement Alarm 3-5
Moving of the Scissors Lift 1-3

P
Platform Components xi
Platform Installation 4-9
Platform Rail Replacement 4-9
Platform Removal 4-9
Primary Machine Components vii

R
Relays ... 3-6
Routine Servicing 6-5
Index (Continued)

S
Scissors .. 4-12
Scissors Arm Assembly 4-14
Scissors Arm Components X
Scissors Arm Disassembly 4-14
Scissors Arm Installation 4-12
Scissors Arm Removal 4-12
Scissors Lift Cylinder Seal Replacement 4-11
Steer Cylinder 2-7
Steer Cylinder Seal Replacement 4-5

T
Tilt Alarm .. 3-5
Tilt Alarm Adjustment 3-6
Tilt Alarm Test 3-5
Tires ... 4-3
Tires, Changing 4-3
Transporting the Unit 1-3
Traversing Deck Cylinder 2-9
Traversing Deck Cylinder Installation 4-10
Traversing Deck Cylinder Removal 4-10
Traversing Deck Cylinder Seal Replacement . 4-10
Traversing Deck System 2-9

U
Undercarriage 4-3
Undercarriage Components IX
Unloading Procedures 1-5

V
Valve, Brake Release Pump 2-7
Valve, Directional Drive 2-7
Valve, Drive Proportional 2-6
Valve, Emergency (Manually) Lowering 2-8
Valve, Flow Control 2-8
Valve, Flow Divider 2-7
Valve, Freewheel 2-7
Valve, Lift ... 2-6
Valve, Lift Holding (Check Valves) 2-8
Valve, Motion Control 2-7
Valve, Pressure Reducing 2-7
Valve, Pressure Relief 2-7
Valve, Steer 2-6
Valve, Traversing Deck (Optional) 2-6
Velocity Fuse 2-8

W
Wheels and Lug Nuts 4-3
Table Of Contents, Appendix

Hydraulic Schematic C-2223050, 2 WD................................. A-3
Hydraulic Schematic C-2223030, 4 WD................................. A-5

Electric Schematic D-2229170 .. A-7
Wiring Diagram Kubota Engine Retrofit SCS-2232610 A-9
NOTE:
This procedure prevents LP fuel vapors from being emitted when the "GROUND/PLAT FORM" selector switch is not returned to the "OFF" position.

PROCEDURE:
1) Locate battery and disconnect ground (black 16A) wire.
2) Locate Kubota engine and start panel at front portion of machine.
3) Remove red 25 GA. (RED) wire connecting the common post on the vapors switch to the common post on the start switch.
4) Add a blue-black 16 GA. (HOT) wire connecting the common post of the vapors switch to the positive (+) post on the engine coil.
5) Reconnect battery ground wire.
6) End of procedure.