MODEL AT 60
Featuring "Full Hydraulic"
Control System

SERVICE
MANUAL

For Service Concerns Only:
Direct Phone Line to
Service Department,
8:00 AM to 5:00 PM
Central Time,
Monday thru Friday.

Phone (414) 355-3181

Part No. 89-446107 • Revision "0.5" dated Dec. 1996 •
Table of Contents

Introduction ... vi
Machine Specifications .. viii
Machine Component Locator ... ix
Undercarriage Component Locator x
Superstructure Component Locator xi
Lower Boom Component Locator xii
Mid Boom Component Locator ... xiii
Upper Boom Component Locator xiv
Platform Component Locator ... xv
Lubrication Chart .. xvi

Section 1: Transportation and Emergency Procedures

Transporting the Unit .. 1-4
Lifting the Unit .. 1-6
Unloading Procedures .. 1-8
Emergency System and Procedures 1-10
Emergency Electrical Pump .. 1-10
Unpowered Emergency Movement 1-10
Emergency lowering ... 1-11

Section 2: Hydraulic System

Hydraulic Fluid .. 2-5
 Handling Precautions .. 2-5
 Fluid Recommendations ... 2-5
 Fluid Contamination Checks .. 2-5
 System Flushing Procedure ... 2-6
Hydraulic System Components 2-9
 Electro-Proportional Circuit 2-9
 Hydraulic Pumps ... 2-9
 Main Hydraulic Pump (Type 1) 2-9
 Main Hydraulic Pump Adjustment 2-10
 Main Hydraulic Pump (Type 2) 2-11
 Main Hydraulic Pump Adjustment 2-13
 Emergency Pump .. 2-13
 Emergency Pump Adjustment 2-13
 High Pressure Filter ... 2-14
 High Pressure Filter Element 2-14
 Hydraulic Fluid Reservoir 2-14
 Hydraulic Reservoir Maintenance 2-14
 Drive/Brake Valve Assembly 2-15
 Motion Control Valve ... 2-15
 Brake Needle Valve ... 2-15
 Brake Shuttle Valve ... 2-15
 Pressure Reducing Valve 2-16
 Double Relief Valve ... 2-16
 Drive Cushion Solenoid Valve 2-16
 Two Speed Drive Valve 2-16

September, 1995
Table of Contents (Continued)

Section 2: Hydraulic System (Continued)

- Boom Lift System .. 2-16
 - Directional Control Valves 2-16
 - Lift Cylinders .. 2-17
- Boom Telescope System ... 2-18
 - Directional Control Valves 2-18
 - Pressure Reducing Valve 2-18
 - Telescope Cylinder ... 2-19
- Superstructure Swing System 2-20
 - Directional Control Valves 2-20
 - Double Counterbalance Valve 2-20
 - Swing Drive Motor/ Reducer Assembly 2-20
- Platform Rotate System .. 2-21
 - Rotate Control Valve .. 2-21
 - Rotary Actuator ... 2-21
 - Rotary Actuator Maintenance 2-21
 - Platform Rotator Pressure Relief Valve 2-21
- Platform Level System .. 2-22
 - Level Control Valve ... 2-22
 - Double Pilot Operated Check Valve 2-22
 - Master Level Cylinder 2-22
 - Relief Valves ... 2-22
 - Slave Level Cylinder ... 2-22
- Steer System ... 2-24
 - Drive/ Steer Manifold Assembly 2-24
 - Steer Cylinder ... 2-24
 - Steer System Maintenance 2-24
 - Hydraulic Swivel .. 2-24

Section 3: Drive System

- Drive System Components .. 3-3
- Drive Motors ... 3-3
 - Front Wheel Motor ... 3-3
 - Hydraulic Drive Motor 3-3
- Rear Axle Drive Motor ... 3-4
 - Rear Axle Drive Motor Replacement 3-4
 - Rear Axle Assembly Replacement 3-4
 - Rear Axle Brake Adjustment 3-6
- Rear Axle Assembly .. 3-6
- Drive/ Brake Valve Assembly 3-7
 - Motion Control Valve .. 3-7
 - Brake Needle Valve ... 3-7
 - Brake Shuttle Valve ... 3-7
 - Pressure Reducing Valve 3-8
 - Double Relief Valve ... 3-8
 - Drive Cushion Solenoid Valve 3-8
 - Two Speed Drive Valve 3-8
- Drive Enable Valve .. 3-8
- Hydraulic Manifold Valve Assembly 3-8
Table of Contents (Continued)

Section 4: Electrical System

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical System</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Maintenance (In Use)</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Troubleshooting</td>
<td>4-4</td>
</tr>
<tr>
<td>Battery Replacement</td>
<td>4-4</td>
</tr>
<tr>
<td>Electrical Theory of Operation</td>
<td>4-5</td>
</tr>
<tr>
<td>Ground Ignition Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Platform Ignition Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Pump Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Drive Control Handle Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Platform Control Box</td>
<td>4-6</td>
</tr>
<tr>
<td>Emergency Stop Button</td>
<td>4-6</td>
</tr>
<tr>
<td>Ignition Switch</td>
<td>4-6</td>
</tr>
<tr>
<td>Toggle Switch</td>
<td>4-6</td>
</tr>
<tr>
<td>Push Button</td>
<td>4-6</td>
</tr>
<tr>
<td>Light Emitting Diode</td>
<td>4-7</td>
</tr>
<tr>
<td>Foot Pedal Switch</td>
<td>4-7</td>
</tr>
<tr>
<td>Ground Control Box</td>
<td>4-8</td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>4-8</td>
</tr>
<tr>
<td>Toggle Switch</td>
<td>4-8</td>
</tr>
<tr>
<td>Push Button</td>
<td>4-8</td>
</tr>
<tr>
<td>Key Switch</td>
<td>4-8</td>
</tr>
<tr>
<td>Volt Meter</td>
<td>4-8</td>
</tr>
<tr>
<td>Hour Meter</td>
<td>4-8</td>
</tr>
<tr>
<td>Engine Oil Pressure Gauge</td>
<td>4-9</td>
</tr>
<tr>
<td>Pendant Control</td>
<td>4-9</td>
</tr>
<tr>
<td>Toggle Switch</td>
<td>4-9</td>
</tr>
<tr>
<td>Movement Alarm</td>
<td>4-9</td>
</tr>
<tr>
<td>Tilt Alarm</td>
<td>4-9</td>
</tr>
<tr>
<td>Tilt Alarm Test</td>
<td>4-10</td>
</tr>
<tr>
<td>Tilt Alarm Sensor Adjustment</td>
<td>4-10</td>
</tr>
<tr>
<td>Warning Horn</td>
<td>4-10</td>
</tr>
<tr>
<td>Relays</td>
<td>4-10</td>
</tr>
<tr>
<td>Limit Switch</td>
<td>4-10</td>
</tr>
<tr>
<td>Electrical and Continuity Checks</td>
<td>4-11</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

Section 5: Mechanical Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Components</td>
<td>5-3</td>
</tr>
<tr>
<td>Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Changing Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Wheels and Lug Nuts</td>
<td>5-3</td>
</tr>
<tr>
<td>Wheel Motor Assembly</td>
<td>5-4</td>
</tr>
<tr>
<td>Steer Cylinder</td>
<td>5-5</td>
</tr>
<tr>
<td>Steer Cylinder Pins</td>
<td>5-5</td>
</tr>
<tr>
<td>Base End Cylinder Pin Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Steer Cylinder Seal Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Tie Rod Assembly</td>
<td>5-6</td>
</tr>
<tr>
<td>Tie Rod Assembly Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>Superstructure</td>
<td>5-6</td>
</tr>
<tr>
<td>Platform</td>
<td>5-9</td>
</tr>
<tr>
<td>Hoses and Cables</td>
<td>5-9</td>
</tr>
<tr>
<td>Miscellaneous Equipment</td>
<td>5-9</td>
</tr>
<tr>
<td>Boom</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Removal</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Replacement</td>
<td>5-11</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Seal Replacement</td>
<td>5-11</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Holding Valve</td>
<td>5-11</td>
</tr>
<tr>
<td>Lower Boom and Lift Cylinder Pivot Pin</td>
<td>5-12</td>
</tr>
<tr>
<td>Middle Boom</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Removal</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Replacement</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Seal Replacement</td>
<td>5-14</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Holding Valve</td>
<td>5-14</td>
</tr>
<tr>
<td>Middle Boom and Lift Cylinder Pivot Pin</td>
<td>5-14</td>
</tr>
<tr>
<td>Upper Boom</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Removal</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Replacement</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Seal Replacement</td>
<td>5-16</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Holding Valve</td>
<td>5-16</td>
</tr>
<tr>
<td>Upper Boom and Lift Cylinder Pivot Pin</td>
<td>5-16</td>
</tr>
<tr>
<td>Wear Pads</td>
<td>5-17</td>
</tr>
<tr>
<td>Rear (Upper End) Wear Pad Replacement</td>
<td>5-17</td>
</tr>
<tr>
<td>Front (Lower End) Wear Pad Replacement</td>
<td>5-17</td>
</tr>
<tr>
<td>Boom Telescope Cylinder</td>
<td>5-18</td>
</tr>
<tr>
<td>Telescope Boom Cylinder Pin Replacement</td>
<td>5-18</td>
</tr>
<tr>
<td>Telescope Cylinder Removal</td>
<td>5-19</td>
</tr>
<tr>
<td>Telescope Cylinder Seal Replacement</td>
<td>5-19</td>
</tr>
<tr>
<td>Telescope Cylinder Installation</td>
<td>5-19</td>
</tr>
<tr>
<td>Holding Valve Inspection</td>
<td>5-20</td>
</tr>
<tr>
<td>Platform Level Cylinders</td>
<td>5-21</td>
</tr>
<tr>
<td>Platform Level Cylinder Pin Replacement</td>
<td>5-21</td>
</tr>
<tr>
<td>Level Cylinder Seal Replacement</td>
<td>5-22</td>
</tr>
<tr>
<td>Bleeding the Platform Leveling Circuit</td>
<td>5-22</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

Section 6: Maintenance Schedule

Maintenance Schedule ... 6-3
General Maintenance Tips ... 6-3
First Three Months of Operation ... 6-3
Routine Servicing ... 6-3
Shift Operational Checklist ... 6-6
Weekly Operational Checklist for Severe Usage 6-9
Monthly Operational Checklist ... 6-10
Semi-Annual Operational Checklist ... 6-12

Section 7: Troubleshooting

General Troubleshooting Tips .. 7-3
Troubleshooting Chart .. 7-4

Index

Appendix
INTRODUCTION

This Service Manual is designed to provide you with the instructions needed to properly maintain the SIMON AERIALS INC. AT 60 Aerial Platform with full hydraulic controls. When used in conjunction with the Operators and Parts manuals (provided separately) this Service Manual will assist you in making necessary adjustments or repairs.

Simon Aerials Mobile Platforms are designed and built to provide many years of safe, dependable service. To obtain full benefits from your AT60, always follow the proper operating and maintenance procedures. Only trained, authorized personnel should be allowed to operate or service this machine. Service personnel should read and study the Operators, Service and Parts Manuals in order to gain a thorough understanding of the unit prior to making any repairs. Exercise all necessary safety precautions when performing maintenance not covered in this manual.

To help you recognize important safety information, we have identified warnings and instructions that directly impact on safety with the following signals:

⚠️ DANGER

"DANGER" INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN DEATH OR SERIOUS INJURY. THIS SIGNAL WORD IS TO APPLY TO THE MOST EXTREME SITUATIONS.

⚠️ WARNING

"WARNING" INDICATES A POTENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR SERIOUS INJURY.

⚠️ CAUTION

"Caution" indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It is also used to alert against unsafe practices which could lead to property-damage-only accidents.
Service personnel and machine operators must understand and comply with all warnings and instructional decals on the body of the machine, and at the ground controls and platform control console.

⚠️ DANGER

MODIFICATIONS OF THIS MACHINE FROM THE ORIGINAL DESIGN AND SPECIFICATION WITHOUT WRITTEN PERMISSION FROM SIMON ARE STRICTLY FORBIDDEN. A MODIFICATION MAY COMPROMISE THE SAFETY OF THE MACHINE, SUBJECTING USERS TO SERIOUS INJURY OR DEATH. ANY SUCH MODIFICATION WILL VOID ANY REMAINING WARRANTY.

Simon reserves the right to change, improve, modify or expand features of its equipment at any time. Specifications, models or equipment are subject to change without notice, and without incurring any obligations to change, improve, modify or expand features of previously delivered equipment.

Any procedures not found within this manual must be evaluated by the individual to assure himself that they are "proper and safe", because all possible procedures cannot be covered.

All Simon manuals are periodically updated to reflect changes that occur in the equipment. Please contact the factory with any questions you may have regarding your machine, or the availability of more recent manuals.
MACHINE SPECIFICATIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Height (maximum)</td>
<td>66 Ft / 20.12 M</td>
</tr>
<tr>
<td>Platform Height (maximum)</td>
<td>60 Ft / 18.29 M</td>
</tr>
<tr>
<td>Horizontal Reach (maximum)</td>
<td>32 Ft 6 in. / 9.91 M</td>
</tr>
<tr>
<td>Platform Capacity (unrestricted, maximum)</td>
<td>500 Lbs / 225 Kg</td>
</tr>
<tr>
<td>Platform Size</td>
<td>30 in. x 60 in. / .76 M x 1.52 M</td>
</tr>
<tr>
<td>Stowed Length</td>
<td>23 Ft 5.5 in. / 7.15 M</td>
</tr>
<tr>
<td>Stowed Height</td>
<td>9 Ft 3 in. / 2.82 M</td>
</tr>
<tr>
<td>Machine Width</td>
<td>7 Ft 10 in. / 2.39 M</td>
</tr>
<tr>
<td>Superstructure Width</td>
<td>7 Ft 8 in. / 2.34 M</td>
</tr>
<tr>
<td>Tailswing Radius (beyond chassis width)</td>
<td>15 in. / .38 M</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>7 Ft 6 in. / 2.29 M</td>
</tr>
<tr>
<td>Ground Clearance</td>
<td>13 in. / .33 M</td>
</tr>
<tr>
<td>Gross Weight (approximate)</td>
<td>21,600 Lbs / 9,797 Kg</td>
</tr>
<tr>
<td>Maximum Travel Speed (4 Wheel Drive):</td>
<td></td>
</tr>
<tr>
<td>Booms Slowed (high speed)</td>
<td>2.2 MPH / 3.5 KPH</td>
</tr>
<tr>
<td>Booms Slowed (low speed)</td>
<td>1.4 MPH / 2.3 KPH</td>
</tr>
<tr>
<td>Booms Elevated</td>
<td>0.5 MPH / 0.8 KPH</td>
</tr>
<tr>
<td>Outside Curb Clearance Radius</td>
<td>16 Ft 4 in. / 4.98 M</td>
</tr>
<tr>
<td>Inside Curb Clearance Radius</td>
<td>77.4 in. / 1.97 M</td>
</tr>
<tr>
<td>Gradeability (high speed)</td>
<td>11° / 20%</td>
</tr>
<tr>
<td>(low speed)</td>
<td>21° / 38%</td>
</tr>
<tr>
<td>Platform Rotation</td>
<td>180°</td>
</tr>
<tr>
<td>Superstructure Rotation</td>
<td></td>
</tr>
<tr>
<td>Tires (Liquid Ballasted)</td>
<td></td>
</tr>
<tr>
<td>Tire Pressure (not required for foam)</td>
<td>390 / 70-16,5 12 Ply (Mudder)</td>
</tr>
<tr>
<td>Pump Compensator Setting</td>
<td>90 PSI / 6.21Bar / 6.33Kg/cm²</td>
</tr>
<tr>
<td>Emergency Pump Relief Valve Setting</td>
<td>3000 PSI / 207 Bar / 211 Kg/cm²</td>
</tr>
<tr>
<td>Hydraulic Pump Flow (Max.)</td>
<td>37 G.P.M. / 140 L.P.M.</td>
</tr>
<tr>
<td>Hydraulic Fluid Capacity: Hydraulic Tank</td>
<td>40 Gal. / 151 L</td>
</tr>
<tr>
<td>Fuel Capacity: Diesel</td>
<td>40 Gal. / 151 L</td>
</tr>
<tr>
<td>Electrical Power System</td>
<td></td>
</tr>
<tr>
<td>Swing Bearing Bolt Torque (lubricated)</td>
<td>170 Ft Lbs / 231 Nm / 23.5 Kg-m</td>
</tr>
<tr>
<td>Axle "U" Bolt Torque (lubricated)</td>
<td>350 Ft Lbs / 475 Nm / 48.4 Kg-m</td>
</tr>
<tr>
<td>Front and Rear Wheel Bolt Torque (lubricated)</td>
<td>130 Ft Lbs / 176 Nm / 18.0 Kg-m</td>
</tr>
<tr>
<td>Front Wheel Adapter Lug Nuts (lubricated)</td>
<td>130 Ft Lbs / 176 Nm / 18.0 Kg-m</td>
</tr>
<tr>
<td>Rear Wheel Adapter Lug Nuts (lubricated)</td>
<td>170 Ft Lbs / 231 Nm / 23.5 Kg-m</td>
</tr>
</tbody>
</table>

Engine Availability:

Standard: Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Gasoline (Dual Fuel Option)
Optional: Detroit Diesel / Perkins 104.22, 50 HP (37.3 KW), Liquid cooled, Diesel Fuel
 Ford LSG 423, 63 HP (47.0 KW, Liquid Cooled, Gasoline or Dual Fuel
 Isuzu C-240, 56 HP (41Kw), Liquid Cooled, Diesel Fuel
 Hatz Silent Pack, 3L40C, 52 HP (38.8 Kw), Air Cooled, Diesel
 Deutz, F4L 1011, 54 HP (40.3 Kw), Air Cooled, Diesel
UPPER BOOM COMPONENT LOCATOR

- MOVING ANCHOR
- HOSE CARRIER
- TIP BOOM WELDMENT
- WEAR PAD
- TELESCOPE CYLINDER
- PRESSURE REDUCING VALVE
- SLAVE LEVEL CYLINDER
- UPPER POST WELDMENT
- UPPER BOOM BASE WELDMENT
- WEAR PADS
- MASTER LEVEL CYLINDER
- UPPER BOOM LIFT CYLINDER

Art #: A03.18003E

Page xiv

September, 1995
PLATFORM COMPONENT LOCATOR

SAFETY LANYARD AND BELT

CONTROL BOX

CONTROL LEVERS

ROTARY ACTUATOR

MANUAL BOX

FOOT PEDAL

GATE

PLATFORM

110 V OUTLET (OPTIONAL)
<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>SPECIFICATION AND QUANTITY</th>
<th>FREQUENCY OF LUBRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydraulic reservoir</td>
<td>Mobil DTE-13M to "Full" mark with all cylinders retracted.</td>
<td>Check level & condition each shift.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analyze 6 months or 500 hours.**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change yearly or 1000 hours.*†</td>
</tr>
<tr>
<td>2.</td>
<td>High pressure filter and emergency pump filter</td>
<td>Filter elements.</td>
<td>Change every 3 months or 500 hours.*†</td>
</tr>
<tr>
<td>3.</td>
<td>Tie rod bearings</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease</td>
<td>Monthly or every 100 hours.*†</td>
</tr>
</tbody>
</table>

* Whichever occurs first.
† Different requirements for severe duty applications. See Operational Checklist.

![Diagram of hydraulic lift](image-url)
<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>SPECIFICATION AND QUANTITY</th>
<th>FREQUENCY OF LUBRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>Swing bearing gear teeth</td>
<td>"Keystone - Moly 29 Open Gear Compound" Coat gear faces..</td>
<td>Monthly or every 100 hours.*†</td>
</tr>
<tr>
<td>5.</td>
<td>Swing bearing</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.*†</td>
</tr>
<tr>
<td>6.</td>
<td>Boom pivot pins and Cylinder pins</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.*†</td>
</tr>
<tr>
<td>7.</td>
<td>Boom wear pads</td>
<td>Silicone spray.</td>
<td>Weekly or every 75 hours.*†</td>
</tr>
<tr>
<td>8.</td>
<td>Hydraulic control valve handle pivot pins</td>
<td>WD 40 Spray or equivalent penetrating oil.</td>
<td>Weekly or every 75 hours.*†</td>
</tr>
<tr>
<td>9.</td>
<td>Axle and planetary ends, and front torque hubs</td>
<td>SAE 80/ 90 APIGL5</td>
<td>Check monthly or every 100 hours.† Change every year or 1,000 hours.</td>
</tr>
<tr>
<td>10.</td>
<td>Platform level and rotate valve lever pins</td>
<td>WD 40 Spray or equivalent penetrating oil</td>
<td>Weekly or every 75 hours.*†</td>
</tr>
<tr>
<td>11.</td>
<td>Steering spindles (king pin bearings)</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Weekly or every 75 hours.*†</td>
</tr>
<tr>
<td>12.</td>
<td>Steering cylinder bearings</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Weekly or every 75 hours.*†</td>
</tr>
</tbody>
</table>

* Whichever occurs first.
† Different requirements for severe duty applications. See Operational Checklist.
SECTION 1: TRANSPORTATION AND EMERGENCY PROCEDURES
Table of Contents, Section 1

Transporting the Unit ... 1-4
Lifting the Unit ... 1-6
Unloading Procedures ... 1-8
Emergency System and Procedures ... 1-10
Emergency Electrical Pump ... 1-10
Unpowered Emergency Movement ... 1-10
Emergency lowering ... 1-11
TRANSPORTING THE UNIT

WARNING
ALWAYS USE A WINCH TO ASSIST LOADING OR UNLOADING THE UNIT FROM A TRUCK OR TRAILER.

UNASSISTED LOADING OR UNLOADING OF ANY MOBILE PLATFORM IS NOT RECOMMENDED.

READ AND UNDERSTAND ALL SAFETY, CONTROL AND OPERATING INFORMATION FOUND ON THE MACHINE AND IN THE OPERATOR'S MANUAL BEFORE OPERATING THE UNIT.

THE WINCH OPERATOR AND UNIT OPERATOR MUST COORDINATE MOVEMENT WHILE LOADING THE UNIT.

1. Enter the platform, and start the engine using the platform controls. Select the "LOW" drive speed.

2. Raise the upper boom to allow greater ground clearance so that the platform will clear any obstacles as the machine goes up the loading ramp.

3. Connect winch cable through the tie down/lifting lugs on the undercarriage.

4. Using a winch, carefully maneuver the unit onto the truck or trailer. (Moving drive levers off of center "neutral" position will release brakes.)

5. Lock the superstructure to the undercarriage by installing the lock pin provided.

CAUTION
To avoid damaging the unit, the boom or platform MUST NOT be tied to the trailer bed in any way.

DO NOT TIE DOWN BOOM OR PLATFORM

AT60 Tie Down (recommended)
6. Ensure that the boom is fully retracted, and that the platform will **not** contact any other item, including the bed of the truck or trailer.

7. Use two (2) 1/2 inch, "Grade 7" chains to the tie down cut outs.

NOTE: Ratchet type load binders are recommended. If using lever type load binders, wire or strap them shut, or wrap chains around them to prevent opening.

8. The negative battery cables should be disconnected for long distance transport. It is recommended that the fuel and hydraulic tank valves be closed as well.
LIFTING THE UNIT

IMPORTANT: The swing bearing lock pin should be installed.

1. Completely lower all booms to the stowed position.

2. Raise upper boom so that lift cylinder rod extension measures 33 inches (0.84 M) from the center of the rod end cylinder pin to top of cylinder head gland (see illustration).

3. Attach unit to hoist with chains from the rear lifting lug shackles and the lower boom post lifting lug shackle as shown.

- Left rear lifting lug chain length (each): approximately 138 inches (3.51 M)

- Pass chain between rails of lower boom parallel arm and between lower boom and mid boom.

- Right rear lifting lug chain length (each): approximately 138 inches (3.51 M)

- Pass chain between mid boom and upper boom.

Lower boom post lifting lug chain length: approximately 78 inches (1.98 M)

⚠️ CAUTION

The lifting devices should be strong enough to lift unit. Refer to Machine Specifications.

To avoid damaging the unit, position chains so they do not contact any part of the booms.

Carefully lift the unit straight up and slowly set it on a level surface clear of personnel and debris.

4. Lift the unit straight up.

5. Slowly set the unit down on a level surface, making certain the area is clear of personnel and debris.

6. Unhook the chains from the hoist, and the lifting lugs.
LIFTING THE UNIT (CONTINUED)

- Chain passes between lower boom and mid boom.
- Chain passes between mid boom and upper boom.
- Lift the unit using lifting lugs.
- Pass left hand chain between lower and mid boom.
- Pass right hand chain between mid and upper boom.
- Lift the unit (recommended).

Lifting the Unit (Recommended).
UNLOADING PROCEDURES

⚠️ WARNING ⚠️

TO AVOID SERIOUS PERSONAL INJURY OR DEATH, ENSURE THAT THE MACHINE IS IN "LOW" DRIVE SPEED WHILE UNLOADING FROM A TRUCK OR TRAILER.

1. Inspect the outside of the unit for damage (including the underside). Inspect all hoses, boom sections and cables for chafing or shipping damage. Confirm that all wheel lug nuts and swing bearing bolts are tight (refer to specifications).

2. Remove the pin that locks the superstructure to the undercarriage near the swing bearing. Stow the lock pin in the location provided nearby.

3. Unlock and open both side compartments. Inspect all fuel, electrical and hydraulic connections for damage and security.

4. Connect battery cables to battery if required. Check electrolyte level.

5. Open the fuel tank valves and check fuel level.

6. Check engine oil level, and add as required per engine manufacturer's recommendations.

7. Check fluid level at the sight gauge on the hydraulic tank, and add fluid as required (see Lubrication Chart). Check that shutoff valves on the hydraulic tank are open.

8. Close side compartment covers.

9. Attach the unit to a winch for the unloading procedure.

⚠️ WARNING ⚠️

ALWAYS USE A WINCH TO ASSIST LOADING OR UNLOADING THE UNIT FROM A TRUCK OR TRAILER. UNASSISTED LOADING OR UNLOADING OF ANY MOBILE PLATFORM IS NOT RECOMMENDED.

READ AND UNDERSTAND ALL SAFETY, CONTROL AND OPERATING INFORMATION FOUND ON THE MACHINE AND IN THIS MANUAL BEFORE OPERATING THE UNIT.

10. Turn key to "GROUND".

12. Remove all machine tie downs. Remove wheel chocks, if used. Turn the Ground/Platform key switch to "PLATFORM CONTROLS".

13. Enter the platform, and restart the engine using the platform controls. Select the "Hi" engine speed, and test all platform functions.

14. Raise the upper boom section so that the platform will clear any obstacles as the machine is driven down the loading ramp.

15. Connect winch cable through the tie down/lifting lugs on the undercarriage.
16. Carefully drive the unit off the truck or trailer with the assistance of a winch.

⚠️ CAUTION ⚠️

Winch line and unit travel must be coordinated during this procedure.

The brakes are automatically released for driving, and will automatically apply when the drive control lever is brought back to the "NEUTRAL" position.

17. Before placing the unit into service, all operators must read and understand the contents of this Operator's Manual.

Upon initial unloading of the machine the Receipt Inspection Adjustment Report or Pre-delivery Inspection Adjustment Report must be completed and returned in order to activate the Simon Limited Warranty.

An Operator's Manual and a Receipt Inspection Adjustment Report are included with each machine leaving the factory.
EMERGENCY SYSTEM AND PROCEDURES

⚠️ DANGER ⚠️

IF THE UNIT FAILS WHILE THE OPERATOR’S PLATFORM IS RAISED OR EXTENDED, DO NOT ATTEMPT TO CLIMB DOWN THE BOOM ASSEMBLY. SERIOUS INJURY MAY RESULT.

EMERGENCY ELECTRICAL PUMP

The AT60 Mobile Platform has a battery powered emergency pump. This pump can be activated from the operator’s platform or ground control station to briefly operate the machine when the unit has lost engine power.

- Turn and hold the pump switch on the ground control console to “EMERGENCY; or press and hold the emergency pump button on the platform control console.
- Select the proper function as desired to fit the situation.

To prevent the battery from completely discharging and the emergency pump from overheating, release the emergency pump switch to allow a 30 second rest period after every 30 seconds of operation. Once the unit has been safely positioned, correct the cause of the failure before returning the unit to service.

UNPOWERED EMERGENCY MOVEMENT

- Every attempt should be made to restore primary power to the unit before using this procedure.

⚠️ DANGER ⚠️

THIS PROCEDURE REQUIRES RELEASING THE VEHICLE BRAKES, WHICH RESULTS IN NO MEANS TO STOP THE UNIT’S TRAVEL. SIMON RECOMMENDS USING THIS PROCEDURE ONLY IN CASES OF EMERGENCY, AND ONLY A SHORT DISTANCE.

BE AWARE OF UNIT RUNAWAY ON SLOPING SURFACES. MOVEMENT SPEED SHALL NOT EXCEED 1 M.P.H. (1.6 K.P.H.).

- Secure the unit with chains or ropes.
- Block wheels.
- Disconnect both front torque hubs by removing the plate in the center of the torque hub, turning the plate so that the boss faces in, then reinstalling the plate.
- Release brakes.

The AT60 is equipped with tie down lugs (front and rear) that can be used for towing the unit. The chains or ropes must be of sufficient capacity to move the unit.

There is a hand pump located to the left of the ground control mounting bracket. Close the valve under the pump plunger by turning it to the right (clockwise) and operate hand pump. Continue to pump until high resistance is felt in the pump plunger. At this point, wheel brakes will be released.

After unblocking the wheels, the unit will be ready to be moved; however, there is no provision for steering the vehicle.
UNPOWERED EMERGENCY MOVEMENT (CONTINUED)

- After primary power has been restored to the vehicle, fully open the needle valve under the hand pump plunger to engage wheel brakes.

- Engage both front torque hubs by removing the plate in the center of the torque hub, turning the plate so that the boss faces out, then reinstalling the plate.

- The machine is now ready for normal operation.

EMERGENCY LOWERING

If it is not possible for us to foresee every emergency situation that could arise during operation of this machine. Information on the following pages describes three typical emergency situations, and lists appropriate actions that can be taken.

When faced with an emergency, above all please remember:

- Stay calm.

- Think through the situation before operating the machine.

- Get help if necessary.

SITUATION: Platform elevated, operator not incapacitated, but unit will not respond to platform controls.

POSSIBLE CONDITION:

- One or more functions not operating correctly.

- Unit movement from unselected control lever.

- Unit function will not stop unless power is switched off.

CORRECTIVE ACTION

1. Remove foot from foot pedal.

2. Push the red "Emergency Stop" Button.

3. Evaluate the nature of the failure. Return to the ground, using the emergency pump and lowering procedure (see "Emergency Pump").

4. If unable to return to the ground using the platform controls and the emergency pump, contact an experienced operator to lower the machine with the emergency pump using the ground controls (see "Emergency Pump").

5. Report the incident to your supervisor immediately.

\[\text{\textbf{DANGER}}\]

DO NOT TRY TO CLIMB DOWN THE BOOM.

HAVE AN EXPERIENCED OPERATOR USE THE EMERGENCY PUMP TO SAFELY LOWER THE PLATFORM.
SITUATION: Unit elevated, with operator incapacitated at platform controls.

⚠️ DANGER

DO NOT TOUCH UNIT !!!

DETERMINE THE CAUSE OF THE PROBLEM BEFORE YOU TOUCH THE MACHINE.

CORRECTIVE ACTION

1. Check for contact with power lines.

2. Have someone summon first aid or rescue squad.

3. Attempt to talk to operator before taking any rescue measures.

4. Check to see if the operator is in a pinned position, or would be endangered if platform is moved, before attempting emergency lowering procedure.

5. After establishing that the machine is not in contact with live power lines, lower the platform using the emergency lowering procedure (see "Emergency Pump", earlier in this section).

6. Render first aid to the operator.

7. Report the incident to your supervisor immediately.

IMPORTANT: Any incident involving personal injury must be immediately reported to the local Simon Aerials Distributorship as well as to Simon Aerials Inc.

SITUATION: Platform in contact with live power lines and operator incapacitated.

⚠️ DANGER

DO NOT TOUCH UNIT !!!!!

ELECTROCUTION HAZARD!!!

CORRECTIVE ACTION

1. Contact authorized personnel to disconnect power supply touching unit.

2. Have someone summon first aid or rescue squad.

3. If operator is unconscious, check to see if he is in a pinned position, or would be endangered if platform is moved.

4. AFTER POWER IS CUT, use the emergency lowering procedure to bring platform with operator to a safe location to render first aid (see "Emergency Pump").

5. Report the incident to your supervisor immediately.

IMPORTANT: Any incident involving personal injury must be immediately reported to the local Simon Aerials Distributorship as well as to Simon Aerials Inc.
SECTION 2:
HYDRAULIC SYSTEM
Table of Contents, Section 2

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Fluid</td>
<td>2-5</td>
</tr>
<tr>
<td>Handling Precautions</td>
<td>2-5</td>
</tr>
<tr>
<td>Fluid Recommendations</td>
<td>2-5</td>
</tr>
<tr>
<td>Fluid Contamination Checks</td>
<td>2-5</td>
</tr>
<tr>
<td>System Flushing Procedure</td>
<td>2-6</td>
</tr>
<tr>
<td>Hydraulic System Components</td>
<td>2-9</td>
</tr>
<tr>
<td>Electro-Proportional Circuit</td>
<td>2-9</td>
</tr>
<tr>
<td>Hydraulic Pumps</td>
<td>2-9</td>
</tr>
<tr>
<td>Main Hydraulic Pump (Type 1)</td>
<td>2-9</td>
</tr>
<tr>
<td>Main Hydraulic Pump Adjustment</td>
<td>2-10</td>
</tr>
<tr>
<td>Main Hydraulic Pump (Type 2)</td>
<td>2-11</td>
</tr>
<tr>
<td>Main Hydraulic Pump Adjustment</td>
<td>2-13</td>
</tr>
<tr>
<td>Emergency Pump</td>
<td>2-13</td>
</tr>
<tr>
<td>Emergency Pump Adjustment</td>
<td>2-13</td>
</tr>
<tr>
<td>High Pressure Filter</td>
<td>2-14</td>
</tr>
<tr>
<td>High Pressure Filter Element</td>
<td>2-14</td>
</tr>
<tr>
<td>Hydraulic Fluid Reservoir</td>
<td>2-14</td>
</tr>
<tr>
<td>Hydraulic Reservoir Maintenance</td>
<td>2-14</td>
</tr>
<tr>
<td>Drive/Brake Valve Assembly</td>
<td>2-15</td>
</tr>
<tr>
<td>Motion Control Valve</td>
<td>2-15</td>
</tr>
<tr>
<td>Brake Needle Valve</td>
<td>2-15</td>
</tr>
<tr>
<td>Brake Shuttle Valve</td>
<td>2-15</td>
</tr>
<tr>
<td>Pressure Reducing Valve</td>
<td>2-16</td>
</tr>
<tr>
<td>Double Relief Valve</td>
<td>2-16</td>
</tr>
<tr>
<td>Drive Cushion Solenoid Valve</td>
<td>2-16</td>
</tr>
<tr>
<td>Two Speed Drive Valve</td>
<td>2-16</td>
</tr>
<tr>
<td>Boom Lift System</td>
<td>2-16</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-16</td>
</tr>
<tr>
<td>Lift Cylinders</td>
<td>2-17</td>
</tr>
<tr>
<td>Boom Telescope System</td>
<td>2-18</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-18</td>
</tr>
<tr>
<td>Pressure Reducing Valve</td>
<td>2-18</td>
</tr>
<tr>
<td>Telescope Cylinder</td>
<td>2-19</td>
</tr>
<tr>
<td>Superstructure Swing System</td>
<td>2-20</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-20</td>
</tr>
<tr>
<td>Double Counterbalance Valve</td>
<td>2-20</td>
</tr>
<tr>
<td>Swing Drive Motor/Reducer Assembly</td>
<td>2-20</td>
</tr>
</tbody>
</table>
Table of Contents, Section 2 (Continued)

- Platform Rotate System .. 2-21
 - Rotate Control Valve ... 2-21
 - Rotary Actuator .. 2-21
 - Rotary Actuator Maintenance 2-21
 - Platform Rotator Pressure Relief Valve 2-21
- Platform Level System ... 2-22
 - Level Control Valve .. 2-22
 - Double Pilot Operated Check Valve 2-22
 - Master Level Cylinder ... 2-22
 - Relief Valves .. 2-22
 - Slave Level Cylinder .. 2-22
- Steer System .. 2-24
 - Drive/Steer Manifold Assembly 2-24
 - Steer Cylinder .. 2-24
 - Steer System Maintenance 2-24
 - Hydraulic Swivel ... 2-24
HYDRAULIC FLUID

HANDLING PRECAUTIONS

⚠️ WARNING ⚠️

PERSONS IN REGULAR CONTACT WITH MINERAL-BASED HYDRAULIC FLUID NEED TO BE AWARE OF THE IMPORTANCE OF THOROUGH HYGIENE, AND THE PROPER METHODS FOR HANDLING MINERAL OILS IN ORDER TO AVOID POTENTIAL HAZARDS TO HEALTH.

If mineral-based hydraulic fluid is SPLASHED INTO THE EYES, it must be WASHED OUT THOROUGHLY using abundant quantities of water. If irritation persists, medical advice should be sought.

Mineral oils act as solvents on the natural oils in the skin. FREQUENT AND PROLONGED SKIN CONTACT CAN CAUSE DERMATITIS OR SEvere IRRITATION. Mineral-based hydraulic fluids normally present no health hazard when used properly. Protective clothing and proper washing facilities should be provided or be accessible.

⚠️ WARNING ⚠️

HYDRAULIC FLUID UNDER PRESSURE CAN PENETRATE AND BURN THE SKIN, DAMAGE EYES, AND MAY CAUSE SERIOUS INJURY, BLINDNESS, AND EVEN DEATH.

FLUID LEAKS UNDER PRESSURE MAY NOT ALWAYS BE VISIBLE.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY, WITHIN A FEW HOURS.

FLUID RECOMMENDATIONS

We strongly recommend the use of MOBIL DTE-13M HYDRAULIC FLUID. An EQUIVALENT substitute can be used if absolutely necessary. Mineral-based hydraulic fluids produced by different companies will USUALLY mix with each other satisfactorily, but this IS NOT RECOMMENDED. When in doubt, consult your supplier.

MOBIL DTE-13M has proven to be suitable for use in all climates. For continued operation in temperatures below 32° F (0° C), use of MOBIL DTE-11M FLUID is satisfactory. For operation in tropical climates, the use of MOBIL DTE-15M is allowable.

FLUID CONTAMINATION CHECKS

Use the following as a guide to determine when analysis of the hydraulic fluid is necessary.

- Any time the hydraulic pump is replaced.

- If fluid discoloration is noticed in the hydraulic reservoir sight tube.

- If, after the first 50 hours of operation, the hydraulic filter elements are plugged.

- Any time the hydraulic filter elements show signs of metal content.

- Once every six months, under normal operating conditions.

- Every 3 months, in extremely dusty or dirty operating conditions.

The hydraulic fluid analysis must be done by a qualified laboratory. To insure that you receive accurate recommendations about the fluid being analyzed, always provide the following information with the test sample.
• Type of hydraulic fluid. (See Lubrication Chart)

• Model and serial number of unit from which sample was taken.

• Purpose of analysis: i.e. pump failure, discoloration, etc.

• Type of analysis: i.e. complete to show additive breakdown, acid buildup, viscosity, type and percent of contaminants. Comparison to new fluid and recommendations.

Comply with contamination analysis and recommendations to achieve a clean, contamination free hydraulic system. Following the above guide will prevent premature failure of pumps, cylinder seals and drive motors, and unnecessary down time.

If system flushing and replacement of fluid is recommended, refer to the flushing procedure.

SYSTEM FLUSHING PROCEDURE

WARNING

BLOCK THE WHEELS TO PREVENT UNEXPECTED MOVEMENT OF THE MACHINE.

1. With BOOMS DOWN AND FULLY RETRACTED (in stowed position), drain hydraulic fluid from hydraulic tank into a clean, empty container. Use an oil filter cart so the fluid may be reused if analysis is good.

2. When the hydraulic tank is empty, remove suction hose to pump, emergency pump hose, telescope retract return hose, vent (return) hose for telescope cylinder, manifold return hose, drive hose from pump with the tee for motor drain.

3. Remove all hoses between pump and high pressure filter.

4. Flush the hoses.

5. Remove hydraulic fluid filter, and flush the filter body and attaching hoses. Discard old filter element and replace.

6. With hoses removed from the hydraulic tank, flush out the tank.

7. Reinstall all the hoses removed in the previous steps **EXCEPT** the return lines to tank. Temporarily tie hoses together and position these hoses so that they will drain into a clean container.

8. If the hydraulic fluid removed from the reservoir is good, pump it (through a filter cart) back into the tank. If fluid is not usable, dispose of it properly and fill the hydraulic tank with filtered, fresh hydraulic fluid (refer to Lubrication Chart).

9. Open the suction line valve to allow fluid to flow to the hydraulic pump.

10. Loosen hose fittings at pump to allow pump to flood with hydraulic fluid. Tighten pump fittings.

11. Turn main power key switch to the "Ground" position.

12. Press "Engine Start" button to start engine.

13. Activate pump selector toggle switch on remote control pendant and hold at "Main" to activate engine powered pump.

CAUTION

Use care when operating functions as return hydraulic fluid is now being returned to container provided.
14. Cycle all cylinder functions to flush the hydraulic components of the hydraulic fluid. This will remove old fluid from the hydraulic system as the cylinder is cycled to its maximum limits.

⚠️ CAUTION ⚠️

Monitor the hydraulic reservoir fluid level when cycling the unit functions. Add fluid as necessary to replace that being discharged to container through system return line. This fluid may be returned to the reservoir through a filter cart, if the fluid analysis shows that it is good.

Three cycles of ALL hydraulic cylinder functions should remove old hydraulic fluid.

15. Disconnect the return hoses for the drive motors. Tie the hoses together and let them drain into a clean container.

⚠️ CAUTION ⚠️

ALWAYS BLOCK THE WHEELS before you raise the machine.

16. Jack the front end of the unit so the front drive wheels are off the ground.

17. Activate pump selector toggle switch on remote control pendant and hold at "Main" to activate engine powered pump.

18. Activate the drive switch on remote control pendant to flush the drive circuit hydraulic components of the hydraulic fluid.

19. Activate the steer toggle switch on remote control pendant to flush the steer cylinder of the hydraulic fluid.

20. When the above procedures have been completed, re-connect system return hose to tank.

21. Fill hydraulic tank to full mark on sight gauge.

22. Operate all functions to their full extreme positions to ensure proper operation.

23. Check for leaks and correct as necessary. Unit is now ready to be placed back in operation.
HYDRAULIC SYSTEM COMPONENTS

Following is a description of the major components of the AT60 hydraulic system.

HYDRAULIC PUMPS

There are two pumps on the machine; the main hydraulic pump and the emergency pump.

MAIN HYDRAULIC PUMP (TYPE 1) (EARLIER VERSION)

The main hydraulic pump is a variable displacement pressure compensated radial piston pump.

Hydraulic fluid enters through the inlet ports. A common inlet gallery provides fluid to all eight inlet valves in the housing. Pistons radially surround an eccentric cam. The cam moves a bearing race upon which the pistons ride. Behind each piston is a spring which holds the piston against the bearing race.

As the pump shaft rotates low hydraulic pressure develops in the piston spring area during downward stroke of the piston. This low pressure allows the inlet valve to open filling the piston cavity with hydraulic fluid. The inlet valve closes at the end of

Main Hydraulic Pump (Type 1).

the intake stroke of the piston.

High pressure is developed as the race pushes the piston outward. As pressure increases a discharge valve opens allowing the fluid to pass into the outlet gallery.

At the end of the stroke, the discharge valve closes. All discharge valves share a common outlet gallery in the pump housing.

An orifice is located between the crankcase and the inlet gallery. Any fluid flow past the pistons is routed through the orifice to the inlet gallery. This flow allows for cooling and lubrication.

Pressure compensated pumps are designed to provide "on demand" high pressure fluid regardless of
flow requirements up to the maximum pump output. The pressure compensator regulates fluid pressure into the pump crankcase. Increased pressure in the crankcase overcomes the piston spring pressure and hold the pistons away from the race, thereby destroking the pump.

TYPE ONE (1) PUMP ADJUSTMENT

⚠️ WARNING ⚠️

ESCAPING FLUID UNDER PRESSURE CAN PENETRATE THE SKIN CAUSING SERIOUS INJURY. RELIEVE PRESSURE BEFORE DISCONNECTING HYDRAULIC LINES. KEEP HANDS AND BODY AWAY FROM PINHOLES AND NOZZLES WHICH EJECT FLUIDS UNDER HIGH PRESSURE. USE A PIECE OF CARDBOARD OR PAPER TO SEARCH FOR LEAKS. DO NOT USE YOUR HAND.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, WITHIN A FEW HOURS, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY.

NOTE: Refer to "Machine Specifications" to determine maximum system pressure for your unit.

To adjust the system pressure:

- Install a 14 mm adapter to the high pressure test port (T-1) and connect a 5000 psi (345 Bar/352 Kg/cm²) gauge.

Main Hydraulic Pump (Type 1) Control Adjustment.
• Locate the adjusting screw on the side of the main pump adapter plate.

• Loosen the locknut and while viewing the pressure gauge, set system pressure to value specified in the "Machine Specifications".

• Turn the adjusting screw out to decrease pressure, in to increase pressure.

• After system pressure has been set, tighten the lock nut.

CAUTION

When first starting a unit where the pump setting is unknown, the adjusting screw should be set to a minimum depth (nearly all the way out) to prevent excessive pressure at start up.

MAIN HYDRAULIC PUMP (TYPE 2)
(LATER VERSION)

All control is achieved by the proper positioning of the swash plate. This is achieved by a servo piston acting on one end of the swash plate working against the combined effect of the off-setting forces of the pistons and centering spring on the other end. The control spool acts as a metering valve which varies the pressure behind the servo piston.

The amount of flow produced by the piston pump is dependent upon the length of stroke of the pumping pistons (see Pumping Action figure). This length of stroke, in turn, is determined by the position of the swash plate. Maximum flow is achieved at an angle of 17°.

The rotating piston barrel, driven by the prime mover, moves the pistons in a circular path and the piston slippers are supported hydrostatically against the face of the swash plate. When the swash plate is in a vertical position, perpendicular to the centerline...
of the piston barrel, there is no piston stroke and consequently no fluid displacement. When the swash plate is positioned at an angle, the pistons are forced in and out of the barrel and fluid displacement takes place. The greater the angle of the swash plate, the greater the piston stroke.

Swash plate angle controls the output flow of the pump (see Pressure Compensated Control figure). Swash plate angle is controlled by the force generated against the swash plate by the pumping pistons and by the force of the servo piston. The force of the servo piston is greater than the force of the pumping pistons when both are at the same pressure.

By means of internal porting, pressure is connected from the output port to the servo piston via orifice "E", and to the control spool via passage "D". Also, pressure is applied to the control spool chamber through orifice "F". As long as the pressures at both ends of the control spool remain equal, the spool will remain offset to the right, due to the added force of the spring.

When pressure reaches the setting of the compensator control, the dart leaves its seat causing the pressure in the spool chamber to be reduced. The spool now moves downward causing pressure in the servo piston cavity to vent via port "A". The reduced pressure at the servo piston allows the servo piston to move to the right. This movement reduces the angle of the swash plate and thereby reduces the pump output flow.
As pump pressure on the control spool drops below pressure and spring force in the spool chamber, the control spool moves upward to maintain an equilibrium on both sides of the spool. If pump pressure falls below compensator control setting, the control spool moves up, bringing the pump to maximum displacement.

TYPE TWO (2) PUMP ADJUSTMENT

WARNING

ESCAPING FLUID UNDER PRESSURE CAN PENETRATE THE SKIN CAUSING SERIOUS INJURY. RELIEVE PRESSURE BEFORE DISCONNECTING HYDRAULIC LINES. KEEP HANDS AND BODY AWAY FROM PINHOLES AND NOZZLES WHICH EJECT FLUIDS UNDER HIGH PRESSURE. USE A PIECE OF CARDBOARD OR PAPER TO SEARCH FOR LEAKS. DO NOT USE YOUR HAND.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, WITHIN A FEW HOURS, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY.

Differential pressure will not normally change through the life of the pump. If this control has been tampered with, a close approximation of the correct setting can be made by the following method.

1. Install a 0-3000 PSI (0-207 Bar) gauge in the port named "Outlet" (see Pressure Compensated Control figure).

2. Deadhead the pump (no flow).

3. Back the pressure compensator adjustment out (full counterclockwise).

4. Turn the differential adjustment knob until 400-425 PSI (28-29 Bar) is reached.

EMERGENCY PUMP

The emergency pump is driven by an 12 volt DC electric motor. This pump delivers hydraulic fluid, under pressure, to the manifold assembly. The electric motor is rated for non-continuous duty and will fail prematurely if activated continuously for extended time periods.

NOTE: This pump should only be used in emergency situations.

EMERGENCY PUMP ADJUSTMENT

The emergency pump pressure setting screw is located on the side of the adapter plate. To adjust the relief pressure on the pump, remove the acorn nut, loosen the jam nut and turn the adjusting screw in to increase pressure. To decrease pressure, turn the adjusting screw out. (See "Machine Specification" for correct setting.)

Emergency Pump.

Emergency Pump Adjustment.
HIGH PRESSURE FILTER

The high pressure hydraulic filter is a non-bypassing filter. This filter allows maximum fluid flow as long as the filter element is free of contaminants. When the filter is dirty, it restricts the hydraulic flow to avoid crushing the filter element due to differential pressure across the element. The build-up of pressure across the filter will reduce pump flow and lower high speed drive performance.

HIGH PRESSURE FILTER ELEMENT

A 10 micron element is the standard element for this filter. See Lubrication Chart for frequency of changing the filter element.

HYDRAULIC FLUID RESERVOIR

The hydraulic fluid reservoir is a part of the superstructure weldment and consists of the tank, a fill cap assembly (breather and strainer), a drain plug, one valve for the suction line, four valves for return lines from the various functions, a drain cock and a sight gauge.

HYDRAULIC RESERVOIR MAINTENANCE

Check tank for signs of leakage. Clean cap filter by flushing with clean solvent and drying. Condensation should be drained from the tank monthly through the drain cock.
DRIVE/ BRAKE VALVE ASSEMBLY

MOTION CONTROL VALVE

This valve consists of three screw in cartridges. The shuttle valve is used to drive pressure to the wheel brakes in order to release the brakes. The other two cartridges are counterbalance valves dedicated for reverse and for forward drive. They serve as hydraulic brakes for drive and also prevent overspeeding.

BRAKE NEEDLE VALVE

The flow control valve meters hydraulic fluid flow released from the spring applied wheel brake assemblies for smooth braking action. The proper valve setting is one (1) turn open from the closed position.

BRAKE SHUTTLE VALVE

The shuttle valve directs hydraulic fluid flow from either the drive pressure reducing valve or the manual brake release hand pump to the hydraulic release brake assembly.

Drive/ Brake Control Valve Assembly.
PRESSURE REDUCING VALVE

Reduces pressure to a maximum of 435 psi (30 Bar/30.6 Kg/cm²) for the brake assemblies.

DOUBLE RELIEF VALVE

The cross port relief valve limits maximum pressure to all wheel drive motors. Valves are set at 3000 psi (207 Bar/211 Kg/cm²).

DRIVE CUSHION SOLENOID VALVE

This is a solenoid valve. When it is open there is a cushioning effect because it bypasses the drive motors with a restricted orifice. When the valve is closed there is no cushioning effect. The valve is closed when in creep speed or on a slope of 5° or more. At all other times the valve is open.

TWO SPEED DRIVE VALVE

This is a normally closed, two position valve. When "HI" speed is selected this valve is energized, allowing flow to enter the "C" rear axle motor port for high speed. When low speed is selected, this valve is closed, blocking flow to the "C" rear axle motor port.

BOOM LIFT SYSTEM

The boom lift system consists of hydraulic directional control valves with pressure compensated flow controls, in both the platform and the ground valve bank assemblies, and a lift cylinder with a counterbalance (holding) valve for each of the three booms.

DIRECTIONAL CONTROL VALVES

Platform

The platform directional control valves direct fluid flow to the boom lift cylinders to provide hydraulic power for raising or lowering the booms. This valve is a 3 position, 4 way manually operated valve. The pressure compensated flow control valves set the boom lift and lower speeds. They can be cleaned with a solvent and blow dried with air. There are no seal kits available and they cannot be adjusted.
Ground

The ground directional control valves are located in the valve bank assembly with the telescope and swing functions. These valves direct fluid flow to the boom lift cylinders to provide hydraulic power for raising or lowering the booms. These valves are 3 position, 4 way manually operated valves. The pressure compensated flow control valves set the boom lift and lower speeds. They can be cleaned with a solvent and blow dried with air. There are no seal kits available for these valves and they cannot be adjusted.

LIFT CYLINDERS

The boom lift functions are powered by double acting cylinders. These cylinders each contain a counterbalance (holding) valve, which prevents unintended retracting of the cylinder should a hose or fitting develop a leak. The counterbalance valve also prevents overspeeding of the boom down function. Make certain that all power is off and that lift cylinder bears no load before repairing. When a boom is lowered, fluid flows to the the rod end cylinder port and to the pilot section of the counterbalance valve, opening this valve and allowing controlled flow of fluid from the base end of the cylinder to flow back to the reservoir.
BOOM TELESCOPE SYSTEM

The boom telescope system consists of a hydraulic directional control valve in the platform valve bank assembly, another directional control valve in the ground valve bank assembly, a pressure reducing valve, and a telescope cylinder with a double counterbalance valve in the upper boom section.

Ground

The ground directional control valve is located in the ground valve bank assembly with the lift and swing functions. This valve directs fluid flow to the telescope cylinder thereby extending or retracting the boom. This valve is a 3 position, 4 way manually operated valve.

DIRECTIONAL CONTROL VALVES

Platform

The platform directional control valve directs fluid flow to the telescope cylinder to power the extending or retracting of the upper boom. This valve is a 3 position, 4 way manually operated valve.

PRESSURE REDUCING VALVE

The pressure reducing valve, located toward the base of the upper boom, is set at 2300 PSI (1-1/2 turns open from fully closed). Its function is to prevent overloading the telescope cylinder during the extend procedure.

Platform Valve Bank Assembly.
TELESCOPE CYLINDER

A double acting telescope cylinder performs the extension and retraction of the boom. This cylinder contains two counterbalance (holding) valves, which prevent unintended movement in either direction of the cylinder should a hose or fitting develop a leak. Also the counterbalance valves prevent overspeeding of the telescope function. When the boom is extended, fluid flows to the base end cylinder port and to the counterbalance valve, opening this valve and allowing fluid from the rod end of the cylinder to flow back to the reservoir. When the boom is retracted, fluid flows to the rod end cylinder port and to the second counterbalance valve, opening this valve and allowing fluid from the base end of the cylinder to flow back to the reservoir.
SUPERSTRUCTURE SWING SYSTEM

The superstructure swing system consists of a hydraulic directional control valve in the platform valve bank assembly, another directional control valve in the ground valve bank assembly, a double counterbalance valve and a motor driven worm gear swing reducer and bearing.

DIRECTIONAL CONTROL VALVE

Platform

The platform swing control valve directs fluid flow to the swing motor to power clockwise or counterclockwise superstructure rotation. This valve is a 3 position, 4 way manually operated valve in a five (5) spool assembly.

Ground

The ground swing control valve is located in the valve bank assembly with the telescope and lift functions. This valve directs fluid flow to the swing motor to power clockwise or counter-clockwise superstructure rotation. This valve is a 3 position, 4 way manually operated valve.

DOUBLE COUNTERBALANCE VALVE (SWING)

The double counterbalance valve acts as a hydraulic brake for the swing motor. It also prevents overrunning of the swing function. The valve maintains resistance to flow in one direction but permits free flow in the other.

SWING DRIVE MOTOR/REDUCER ASSEMBLY

The worm gear swing reducer reduces the hydraulic motor output speed while greatly increasing swing drive torque. This causes the superstructure to rotate at a slow controlled speed whenever fluid power is applied to the swing drive motor.

The worm gear drive in the swing reducer is self-locking and prevents unpowered movement of the swing function.
PLATFORM ROTATE SYSTEM

The platform rotate system consists of a platform rotate control valve, a rotary actuator and a double relief/check manifold. The platform rotate system can only be operated from the platform control console.

ROTATE CONTROL VALVE

The platform rotate control valve is mounted on the platform control valve bank. This valve is a three position, four way valve which is manually operated. This control valve directs fluid flow to the rotate actuator via the manifold.

ROTARY ACTUATOR

The rotary actuator is a helical type. Hydraulic fluid enters the actuator from one of two ports depending on direction of rotation. Fluid under pressure will bear on the piston and force the piston sleeve up or down depending on rotation direction. The helical gear teeth engage with the shaft and causes rotation of the platform.

Rotary Actuator Maintenance

Check end cap torque every 800 hours or once a year.

PLATFORM ROTATOR PRESSURE RELIEF VALVE

The platform rotator pressure relief valve manifold contains a double pilot operated check valve which prevents involuntary movement of the rotary actuator. It is mounted to the rotary actuator. It also contains a cross port relief valve to prevent damage to the rotary actuator due to over-pressurization caused by the platform being swung, extended or driven into a stationary object. Each valve side should be set at 1200 psi. Call Simon Service for adjustment.

Components of Platform Rotate System.
PLATEFORM LEVELING SYSTEM

The platform leveling system consists of a level control valve, master leveling cylinder, slave leveling cylinder, double counterbalance (holding) valves, double pilot operated check valve and two relief valves.

The platform leveling system automatically keeps the platform level, using a master/slave cylinder arrangement. As the upper boom is raised or lowered, fluid is pumped from the master cylinder to the slave cylinder in a closed loop, which keeps the platform level in any boom position. Platform level may be changed manually by actuating the platform level control valve which is only at the platform.

LEVEL CONTROL VALVE

The platform level control valve is mounted on the platform control (7 spool) valve bank. This valve is a manually operated three position, four way valve. This control valve directs fluid flow to the slave level cylinder to manually adjust the platform angle.

DOUBLE PILOT OPERATED CHECK VALVES

The double pilot operated check valves provide a positive means of locking fluid in the closed loop circuit, and allow free flow in one direction.

MASTER LEVEL CYLINDER

The master leveling cylinder is a double acting cylinder located between the upper post and the upper base boom. Whenever the upper boom is raised or lowered, the master cylinder rod is forced to extend or retract. The fluid displaced from the master level cylinder is in turn pumped up the boom to the slave level cylinder. This forces the slave level cylinder to move the same distance as the master level cylinder, automatically changing platform angle to match the upper boom angle.

RELIEF VALVES

The relief valves are factory set at 3000 PSI (207 Bar/211 Kg/cm²). High pressure can occur whenever the platform has been manually levelled, and the slave level cylinder "bottoms out" before the master level cylinder reaches the end of its stroke (either extending or retracting).

SLAVE LEVEL CYLINDER

The slave leveling cylinder is a double acting cylinder connected between the tip boom and the platform. This cylinder controls the angle of the platform relative to the tip boom.

The slave leveling cylinder contains two counterbalance valves. The counterbalance valves prevent unintended unpowered platform movement and overspeeding of the leveling function.
Platform Level Components.
STEER SYSTEM

The steer system consists of the steer cylinder, a valve section in the drive/steer manifold assembly, and control switches located at the platform and ground (option) stations.

DRIVE/STEER MANIFOLD ASSEMBLY

The steer system is controlled by the bottom valve on the drive/steer manifold assembly. This valve is activated from the platform by a rocker switch on top of the drive control lever. When the switch is pressed to steer "LEFT" or "RIGHT", the steer valve solenoid energizes and the spool shifts to allow fluid flow to power the steer cylinder rod in either direction.

LOW SPEED DIRECTIONAL CONTROL VALVE

STEER CYLINDER

The steering system is powered by a double acting hydraulic steer cylinder. The base end of the steer cylinder is attached to the chassis frame, while the rod end is connected to the tie rod.

STEER SYSTEM MAINTENANCE

Check all pins in steering system for excessive play, due to wear. All pins must be securely locked in place with the retainers provided. Lubricate pin joints as necessary. Check cylinder and hoses for hydraulic fluid leakage and security.

HYDRAULIC SWIVEL

The optional hydraulic swivel joint allows hydraulic fluid for drive and steer to pass between the superstructure and the chassis. The swivel allows for 360° of continuous superstructure rotation in either direction.

Hydraulic Swivel Option.
SOLENOID VALVE CHECKS

To check solenoid operation:

1. Disconnect wires to solenoid.

2. Test resistance of coil. If resistance of coil is greater than 10 ohms, replace coil.

To check valve spool operation:

1. Connect one terminal or lead to battery ground source.

2. Connect power to other terminal or lead. When power is applied, you should be able to feel the spool shift while holding it in your hand. When current is removed, similarly, you should be able to feel the spool shift while holding it in your hand. If spool does not shift clean and/or replace.

To clean valve:

- Rinse in clean solvent and blow dry with air.
SECTION 3: DRIVE SYSTEM
Table of Contents, Section 3

Drive System Components ... 3-3
Drive Motors ... 3-3
 Front Wheel Motor ... 3-3
 Hydraulic Drive Motor .. 3-3
Rear Axle Drive Motor ... 3-4
 Rear Axle Drive Motor Replacement 3-4
 Rear Axle Assembly Replacement 3-4
 Rear Axle Brake Adjustment 3-6
Rear Axle Assembly ... 3-6
Drive/Brake Valve Assembly ... 3-7
 Motion Control Valve .. 3-7
 Brake Needle Valve ... 3-7
 Brake Shuttle Valve ... 3-7
 Pressure Reducing Valve ... 3-8
 Double Relief Valve .. 3-8
 Drive Cushion Solenoid Valve 3-8
 Two Speed Drive Valve .. 3-8
Drive Enable Valve ... 3-8
Hydraulic Manifold Valve Assembly 3-8

Page 3-2
The AT60 drive circuit consists of a wheel drive motor at each front wheel and a hydraulic drive motor on the rear axle, a motion control valve assembly, an optional pendant control, and an electro-proportional platform drive control handle.

DRIVE MOTORS

There are two types of drive motors; one roller stator drive motor with integrated hub is mounted to each front wheel and a roller stator motor is mounted to the rear axle.

FRONT WHEEL MOTOR

Two hydraulic motors drive the front wheels. See "Mechanical Components" section in this manual for motor replacement.

HYDRAULIC DRIVE MOTOR

A third hydraulic motor is mounted on the rear axle assembly and drives the rear wheels. A seal kit is available (see Illustrated Parts Catalog). See "Mechanical Components" section in this manual for motor replacement.
REAR AXLE DRIVE MOTOR

Check for any leaks. Check for brakes that are dragging by looking for overheating of the axle or slow down of drive speed. Refer to brake adjustment in this section.

REAR AXLE DRIVE MOTOR REPLACEMENT

1. Block the front wheels and raise the rear of the machine.

2. Disconnect the hoses to the motor and mark hoses so they may be replaced in the proper ports.

3. Remove the capscrews, flat washers and nuts holding the motor to the axle.

4. Remove the rear axle drive motor.

5. Remove the "O"-ring.

6. Install a new "O"-ring.

7. Install the rear axle drive motor.

REAR AXLE ASSEMBLY REPLACEMENT

To remove the rear axle assembly:

⚠️ CAUTION

ALWAYS BLOCK THE WHEELS before you raise the machine.

1. Block the front wheels.

2. Raise the rear of the machine and support the undercarriage structure.

DIAGRAM

Rear Axle Drive Motor.
3. Remove the motor from rear drive axle and disconnect the line connected to the axle disengage mechanism.

4. Remove both rear wheel and tire assemblies.

5. Support both axle hub ends with a crane and chains or floor jacks.

6. Remove the "U"-bolts and nuts from the undercarriage. This releases the axle assembly. Carefully lower the axle to the ground.

⚠️ CAUTION

DO NOT let the axle drop. You may damage the axle.

To install the rear axle assembly:

1. Support both axle hub ends with a crane and chains.

2. Position the rear axle assembly to align with the undercarriage mounting holes.

3. Install "U"-bolts and nuts.

4. Remove the support chairs.

5. Install rear wheel and tire assemblies. Fasten lug nuts and tighten to proper torque (see Machine Specifications).

6. Install the motor to rear drive axle and connect the line connected to the axle disengage mechanism.

7. Lower the machine and remove the blocks.

Figure showing Rear Axle Assembly with labeled parts.
REAR AXLE BRAKE ADJUSTMENT

1. Remove the socket head center plug on the brake cover.

2. Remove the hydraulic line and fitting just below the actuator shaft. Install bolt where the hydraulic line fitting was removed and screw to maximum depth to disengage the failsafe brake.

3. Install a dial indicator to the end of the actuator shaft. Indicator shaft must be in the same plane as the brake actuator shaft. Adjust the dial setting to "0".

4. Back out the bolt (M12 x 1) until the brake engages (bolt will turn free).

5. Read gauge setting. Proper setting range is 0.059 - 0.098 inch (1.5 - 2.5 mm).

If the indicator setting is out of this range, the indicator should be removed so the brake adjustment nut can be adjusted for proper shaft travel.

REAR AXLE ASSEMBLY

In the axle, check the gear lube monthly and change the gear lube yearly.

Check for any leaks. Check for proper operation. Call Simon Service before checking for any bearing or gear damage. Replace rear axle assembly if components can't be replaced.

Spring Applied Hydraulic Release Brake.
DRIVE/ BRAKE VALVE ASSEMBLY

MOTION CONTROL VALVE

This valve consists of three screw in cartridges. The shuttle valve is used to drive pressure to the wheel brakes in order to release the brakes. The other two cartridges are counterbalance valves dedicated for reverse and for forward drive. They serve as hydraulic brakes for drive and also prevent overspeeding.

BRAKE NEEDLE VALVE

The flow control valve meters hydraulic fluid flow released from the spring applied wheel brake assemblies for smooth braking action. The proper valve setting is one (1) turn from the closed position.

BRAKE SHUTTLE VALVE

The shuttle valve directs hydraulic fluid flow from either the drive pressure reducing valve or the manual brake release hand pump to the hydraulic release brake assembly.

DRIVE CUSHION VALVE KIT

.082 ORIFICE

SOLENOID VALVE

DOUBLE RELIEF VALVE

PRESSURE REDUCING VALVE (WHEEL BRAKES)

BRAKE SHUTTLE VALVE

BRAKE NEEDLE VALVE

Versions with 360° Continuous Option.

Drive/ Brake Control Valve Assembly.
PRESSURE REDUCING VALVE

Reduces pressure to a maximum of 435 psi (30 Bar/ 30.6 Kg/cm²) for the brake assemblies.

DOUBLE RELIEF VALVE

The cross port relief valve limits maximum pressure to all wheel drive motors. Valves are set at 3000 psi (207 Bar/ 211 Kg/cm²).

DRIVE CUSHION SOLENOID VALVE

This solenoid valve which when open there is a cushioning effect because it bypasses the drive motors with a restricted orifice. When the valve is closed there is no cushioning effect. The valve is closed when in creep speed or on a slope of 5° or more. At all other times the valve is open.

TWO SPEED DRIVE VALVE

This is a normally closed, two position valve. When "HI" speed is selected this valve is energized, allowing flow to enter the "C" rear axle motor port for high speed. When low speed is selected, this valve is closed, blocking flow to the "C" rear axle motor port.

DRIVE ENABLE VALVE

The drive enable valve is a two-way valve which when open allows fluid to go to the drive handle to control the pump flow output. This valve is normally closed when operating boom functions.

HYDRAULIC MANIFOLD VALVE ASSEMBLY

The drive system is controlled by valves on the drive/steer manifold assembly mounted to the right of the ground controls. These valves are activated by the drive control lever on the platform control console or a toggle switch on the optional pendant control at the ground station. When the drive control lever or the toggle switch is pushed to "FORWARD" or "REVERSE", the valve spools shift to allow hydraulic fluid flow to the drive motors. The low speed valve and the high speed valve are both 4-way, three position solenoid operated valves.

LOW SPEED DIRECTIONAL CONTROL VALVE

DIVERTER VALVE

HIGH SPEED DIRECTIONAL CONTROL VALVE

CONTROL VALVE MANIFOLD

HIGH SPEED DIRECTIONAL CONTROL VALVE

STEER DIRECTIONAL CONTROL VALVE

Drive/Steer Manifold Assembly.
SECTION 4:
ELECTRICAL SYSTEM
Table of Contents, Section 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical System</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Maintenance (In Use)</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Troubleshooting</td>
<td>4-4</td>
</tr>
<tr>
<td>Battery Replacement</td>
<td>4-4</td>
</tr>
<tr>
<td>Electrical Theory of Operation</td>
<td>4-5</td>
</tr>
<tr>
<td>Ground Ignition Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Platform Ignition Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Pump Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Drive Control Handle Circuit</td>
<td>4-5</td>
</tr>
<tr>
<td>Platform Control Box</td>
<td>4-6</td>
</tr>
<tr>
<td>Emergency Stop Button</td>
<td>4-6</td>
</tr>
<tr>
<td>Ignition Switch</td>
<td>4-6</td>
</tr>
<tr>
<td>Toggle Switch</td>
<td>4-6</td>
</tr>
<tr>
<td>Push Button</td>
<td>4-6</td>
</tr>
<tr>
<td>Light Emitting Diode</td>
<td>4-7</td>
</tr>
<tr>
<td>Foot Pedal Switch</td>
<td>4-7</td>
</tr>
<tr>
<td>Ground Control Box</td>
<td>4-8</td>
</tr>
<tr>
<td>Circuit Breaker</td>
<td>4-8</td>
</tr>
<tr>
<td>Toggle Switch</td>
<td>4-8</td>
</tr>
<tr>
<td>Push Button</td>
<td>4-8</td>
</tr>
<tr>
<td>Key Switch</td>
<td>4-8</td>
</tr>
<tr>
<td>Volt Meter</td>
<td>4-8</td>
</tr>
<tr>
<td>Hour Meter</td>
<td>4-8</td>
</tr>
<tr>
<td>Engine Oil Pressure Gauge</td>
<td>4-9</td>
</tr>
<tr>
<td>Pendant Control</td>
<td>4-9</td>
</tr>
<tr>
<td>Toggle Switch</td>
<td>4-9</td>
</tr>
<tr>
<td>Movement Alarm</td>
<td>4-9</td>
</tr>
<tr>
<td>Tilt Alarm</td>
<td>4-9</td>
</tr>
<tr>
<td>Tilt Alarm Test</td>
<td>4-10</td>
</tr>
<tr>
<td>Tilt Alarm Sensor Adjustment</td>
<td>4-10</td>
</tr>
<tr>
<td>Warning Horn</td>
<td>4-10</td>
</tr>
<tr>
<td>Relays</td>
<td>4-10</td>
</tr>
<tr>
<td>Limit Switch</td>
<td>4-10</td>
</tr>
<tr>
<td>Electrical and Continuity Checks</td>
<td>4-11</td>
</tr>
</tbody>
</table>
ELECTRICAL SYSTEM

Following is a description of the major components of the AT60 electrical system.

BATTERY

One 12 volt battery supplies the electrical power required to start the engine and operate the emergency pump. The battery is located in the engine side compartment of the superstructure.

BATTERY MAINTENANCE (IN USE)

Check battery and mounting frame for signs of damage or corrosion.

Check battery terminals for:

- Corrosion. Regularly clean connections and apply a non-metallic grease or protective spray to retard corrosion.

- Loose connections. Be sure all cable connections are tight, and that good contact is made to terminals.

- Broken or frayed cables. Be sure all cable connections are good, and that no loose or broken wires are exposed. Replace as needed.

Check battery electrolyte level. Replenish the electrolyte, if necessary.

⚠️ WARNING

NEVER ADD ADDITIONAL ACID TO THE BATTERY.

Remove vent caps before filling, and USE ONLY DISTILLED WATER. Fill all cells to the proper level. Do not overfill. Fill to level indicator (or 1/2 inch over the top of the separators if there is no level indicator). Do not use a hose to add water to battery.

Allowing the electrolyte level to drop below the top of the separators will lead to shortened battery life. Excessive water usage can indicate that a battery has been overcharged, subjected to excessively high temperatures, or is nearing the end of its service life.

Keep battery clean. Wash the top of the battery, making sure the vent caps are in place. Do not allow cleaning water or other foreign matter to enter the cells. Use a solution of bicarbonate of soda and water to wash the battery if there is an accumulation of acid.
BATTERY TROUBLESHOOTING

Once a month:

- Check all cells with a hydrometer for variation in specific gravity. A fully charged battery should indicate between 1.25 and 1.28 specific gravity. A variation of 0.03 points or more between cells is an indication that the battery should be replaced. Mark the low cells.

BATTERY REPLACEMENT

To remove the battery, follow these procedures:

⚠️ WARNING

BEFORE REMOVING BATTERY FROM THE UNIT, TURN OFF THE IGNITION SWITCH. THERE SHOULD BE NO POWER TO THE MACHINE.

Be sure all power to the machine is shut off. Disconnect the battery cables.

⚠️ CAUTION

Always disconnect the negative battery cable first.

Remove the wing nut, and hold down bracket holding the battery to the superstructure.

Carefully lift the battery from the superstructure. Set aside and dispose of properly.

To install the battery, place the battery in its proper location. Position the battery hold down bracket and install wing nut. Connect the battery cables.

⚠️ CAUTION

Always connect the positive battery cable first.

LIGHT EMITTING DIODE
ELECTRICAL THEORY OF OPERATION

GROUND IGNITION CIRCUIT

With the 20 amp circuit breaker, the ground emergency stop button and platform relay CR3B closed, and the keyswitch to GROUND, power goes to CR3A, the ground ignition relay coil and closes normally open CR3A, and opens normally closed CR3B.

When the ground start pushbutton is pressed, power goes to the engine start coil and closes the normally open CR1, as well as to the fuel solenoid, and energizes the starter motor relay coil and closes the normally open SR1. The starter motor engages and turns over the engine.

If the oil pressure switch is open, the engine start relay CR1 remains open preventing the engine starter motor relay SR1 from closing; consequently the engine will not start.

PLATFORM IGNITION CIRCUIT

With the 20 amp circuit breaker and the ground emergency stop button closed, and the keyswitch to PLATFORM, power goes to the normally closed foot pedal switch.

With the platform ignition switch closed, power is applied to solenoid CR30, energing platform power and with the switch pressed to start, power energizes relay CR1 coil and closes normally open CR1, so that power passes through coil SR1 closing the normally open SR1 relay to power the starter motor.

If the oil pressure switch is open, the engine start relay CR1 remains open preventing the engine starter motor relay SR1 from closing; consequently the engine will not start. If the platform foot switch is closed, the engine will not start. When the platform sensor ring (option) has been tripped the engine will not start from the platform unless the sensor override button is pressed.

PUMP CIRCUIT

For ground operation, with the ground pump switch to MAIN, power goes to the pump stroke valve and dump valve, thus engaging the hydraulic pump.

With the ground pump switch to EMERGENCY, the dump valve is closed, and power energizes SR2, closing the normally open emergency pump relay, and energizing the emergency pump motor.

For platform operation, with the platform emergency stop button closed, power goes to the pump stroke valve and the dump valve, thus engaging the hydraulic pump, if platform foot switch is closed.

With the platform emergency pump button pressed, power goes to the emergency pump relay coil SR2 and closes the normally open relay to provide power for the emergency pump.

DRIVE CONTROL HANDLE CIRCUIT

With the ground selector switch positioned for platform operation, forward drive is controlled by normally open relay CRF and reverse drive is controlled by normally open relay CRR.

When the high speed toggle is enabled, CRHS coil is energized, which closes the normally open CRHS relay and the drive motor is switched to high speed by the high speed drive valve.

The boom limit switch, when open, inhibits high speed.

Steer right is controlled by relay CRSR which energizes the right steer coil and shifts the steer right valve, and steer left is controlled by relay CRSL which energizes the left steer coil and shifts the steer left valve.
PLATFORM CONTROL BOX

EMERGENCY STOP BUTTON

The emergency stop button acts as a power "ON/OFF" switch. Both switches (one on the ground control box and one at the platform control panel) must be "ON" to operate the machine. When either of the emergency stop buttons is depressed, all functions stop immediately, including the engine, and the wheel brakes are automatically applied.

When troubleshooting the electrical circuit, check first if either emergency stop button is depressed. If there is a problem with the emergency stop button, check the wiring to the button. If the wiring is operational, replace the emergency stop button.

IGNITION SWITCH

The ignition switch ("START/ON/OFF") on the platform control panel acts as a power "ON/OFF" switch. The switch must be "ON" to operate the machine from the platform. When the ignition switch is flipped to "OFF", all functions stop immediately and the wheel brakes are automatically applied.

If there is a problem with the ignition switch, check the wiring to the switch. If the wiring is operational, replace the switch.

TOGGLE SWITCH

There can be one or more two-position toggle switches on the platform control box. If there is a problem with a toggle switch, check the wiring. If the wiring is operational, replace the toggle switch.

PUSH BUTTON

There are push buttons on the platform control box. If there is a problem with a push button, check the wiring. If the wiring is operational, replace the push button.
There is one light emitting diode (LED) on the platform control box. If there is a problem with the diode, check the wiring. If the wiring is operational, replace the diode.

FOOT PEDAL SWITCH

The foot pedal is located on the platform floor. The foot pedal is a single pole, double throw electrical switch which must be fully depressed before any machine function can be operated from the platform. When the foot pedal switch is released, power to the dump valve solenoid and drive valve solenoids is terminated, and all machine functions stop. The engine continues to run.

When troubleshooting the electrical and hydraulic circuits to the platform, ensure that the foot pedal switch is depressed. Check the wiring to the foot pedal switch. If the wiring is operational, but there is a problem with the foot pedal circuit, replace the switch.
GROUND CONTROL BOX

CIRCUIT BREAKER

There is one 20 amp circuit breaker mounted on the cover of the ground control box.

Check for a tripped breaker and re-set by pushing in the button. If the breaker trips again, the cause of the high current draw must be corrected prior to further operation.

TOGGLE SWITCH

There is one three-position toggle switches (a second is optional) on the ground control box. If there is a problem with a toggle switch, check the wiring. If the wiring is operational, replace the toggle switch.

PUSH BUTTON

There are two push buttons on the ground control box. If there is a problem with a push button, check the wiring. If the wiring is operational, replace the push button.

KEY SWITCH

There is a three-position key switch (GROUND/ OFF/ PLATFORM) on the ground control box that acts as a power "ON-OFF" switch. The switch must be in the "GROUND" or "PLATFORM" position to operate the machine. When troubleshooting the electrical circuit, make sure the key switch is in the correct position. If there is a problem with the key switch, check the wiring. If the wiring is operational, replace the key switch.

VOLT METER

The volt meter indicates the current battery charge. If there is a problem with the volt meter, check the wiring. If the wiring is operational, replace the meter.

HOUR METER

The hour meter indicates total elapsed time the machine has been operated in hours and tenths. If there is a problem with the hour meter, check the wiring. If the wiring is operational, replace the meter.

ELECTRICAL SYSTEM

Ground Control Box.
ENGINE OIL PRESSURE GAUGE

The engine oil pressure gauge indicates the engine oil pressure. If there is a problem with the engine oil pressure gauge, check the wiring. If the wiring is operational, replace the gauge.

PENDANT CONTROL (OPTION)

The optional pendant control is located on the superstructure, behind the control side door.

TOGGLE SWITCH

There are three three-position toggle switches. If there is a problem with a toggle switch, check the wiring. If the wiring is operational, replace the toggle switch.

If the movement alarm does not function, check the wiring. If wiring is operational, replace the alarm.

TILT ALARM

The tilt alarm gives an audible warning at the ground and at the platform when the machine is five degrees or more out of level. The alarm can be tested by manually tipping the alarm sensor (see "Tilt Alarm Test" procedure). If the tilt alarm does not function, check the horn, then check the output relay in the ground control box. Check the wiring. If wiring is operational, replace the alarm sensor.

Movement Alarm

The movement alarm is located on top of the ground control bracket. It is activated as soon as the drive controller on the platform control console or the forward/reverse toggle switch on the pendant control is moved off the center "Neutral" position.

WARNING

THE MOVEMENT ALARM IS PROVIDED FOR YOUR PROTECTION, AND THE PROTECTION OF PERSONS WORKING IN THE IMMEDIATE AREA.

DISABLING THIS IMPORTANT SAFETY DEVICE MAY RESULT IN DEATH OR SERIOUS INJURY.

Pendant Control.
Level the base of the sensor by tightening each of the three flange nuts to take up approximately one half of its spring's travel. During the remainder of the adjustment procedure, DO NOT ADJUST THE NUT ON THE 90° CORNER.

Check to be sure the electrical connections are correct. Slowly tighten the nut on one of the two corners ADJACENT to the 90° corner until the light-emitting diode (LED) just turns on, indicating that the circuit is closed. Note the position of the nut.

Loosen the nut (LED will go out), carefully counting the number and fraction of turns until the LED lights up again. Divide that number by two and tighten the nut by this number of turns.

Adjust the nut on the OTHER corner adjacent to the 90° corner in the same manner. The alarm is now level, to the degree of accuracy determined by the nut adjustments and the surface on which the machine is sitting. Test the tilt alarm for proper function.

WARNING HORN (OPTIONAL)

The horn gives an audible warning. If the horn does not function, check the horn relay and wiring. If wiring and relay are correct, replace the horn.

RELAYS

There are a number of relays associated with machine functions that are located in the ground control box (refer to Electrical Schematic at the back of this manual). If faulty, replace.

LIMIT SWITCH

There is one limit switch located on the unit as a safety device for the boom lift function.

Unless the boom lift limit switch is closed as shown on the unit electrical schematic at the end of this manual, the unit will only be able to travel at creep speed. If faulty, replace.
ELECTRICAL AND CONTINUITY CHECKS

To check continuity of a toggle switch:

1. Connect one probe of ohm meter to one connection on toggle switch and other probe to other connection.

2. When toggle is open, there should be a zero reading, and when closed there should be a low reading.

To check continuity of key switch:

1. Connect one probe of ohm meter to common of key switch and the other probe to normally open terminal.

2. When switch is flipped, there should be a low resistance.

To check continuity of emergency stop button:

1. Connect one probe of ohm meter to connection on button and other probe on other connection.

2. There should be a zero reading with the button pressed and a low resistance with it reset.

To check relay operation:

1. With one connection grounded, apply voltage to other relay connection.

2. Confirm normally closed contacts are opening, or normally open contacts are closing.

To check limit switch operation:

1. With one probe of ohm meter to common and other probe to open contact, move limit switch arm. Low resistance should be seen.

2. With one probe of ohm meter to common and other probe to closed contact. Low resistance should be seen. Move limit switch arm and no resistance should be seen.
SECTION 5:
MECHANICAL COMPONENTS
Table of Contents, Section 5

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Components</td>
<td>5-3</td>
</tr>
<tr>
<td>Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Changing Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Wheels and Lug Nuts</td>
<td>5-3</td>
</tr>
<tr>
<td>Wheel Motor Assembly</td>
<td>5-4</td>
</tr>
<tr>
<td>Steer Cylinder</td>
<td>5-5</td>
</tr>
<tr>
<td>Steer Cylinder Pins</td>
<td>5-5</td>
</tr>
<tr>
<td>Base End Cylinder Pin Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Steer Cylinder Seal Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Tie Rod Assembly</td>
<td>5-6</td>
</tr>
<tr>
<td>Tie Rod Assembly Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>Superstructure</td>
<td>5-6</td>
</tr>
<tr>
<td>Platform</td>
<td>5-9</td>
</tr>
<tr>
<td>Hoses and Cables</td>
<td>5-9</td>
</tr>
<tr>
<td>Miscellaneous Equipment</td>
<td>5-9</td>
</tr>
<tr>
<td>Boom</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Removal</td>
<td>5-10</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Replacement</td>
<td>5-11</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Seal Replacement</td>
<td>5-11</td>
</tr>
<tr>
<td>Lower Boom Lift Cylinder Holding Valve</td>
<td>5-11</td>
</tr>
<tr>
<td>Lower Boom and Lift Cylinder Pivot Pin</td>
<td>5-12</td>
</tr>
<tr>
<td>Middle Boom</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Removal</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Replacement</td>
<td>5-13</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Seal Replacement</td>
<td>5-14</td>
</tr>
<tr>
<td>Middle Boom Lift Cylinder Holding Valve</td>
<td>5-14</td>
</tr>
<tr>
<td>Middle Boom and Lift Cylinder Pivot Pin</td>
<td>5-14</td>
</tr>
<tr>
<td>Upper Boom</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Removal</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Replacement</td>
<td>5-15</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Seal Replacement</td>
<td>5-16</td>
</tr>
<tr>
<td>Upper Boom Lift Cylinder Holding Valve</td>
<td>5-16</td>
</tr>
<tr>
<td>Upper Boom and Lift Cylinder Pivot Pin</td>
<td>5-16</td>
</tr>
<tr>
<td>Wear Pads</td>
<td>5-17</td>
</tr>
<tr>
<td>Rear (Upper End) Wear Pad Replacement</td>
<td>5-17</td>
</tr>
<tr>
<td>Front (Lower End) Wear Pad Replacement</td>
<td>5-17</td>
</tr>
<tr>
<td>Boom Telescope Cylinder</td>
<td>5-18</td>
</tr>
<tr>
<td>Telescope Boom Cylinder Pin Replacement</td>
<td>5-18</td>
</tr>
<tr>
<td>Telescope Cylinder Removal</td>
<td>5-19</td>
</tr>
<tr>
<td>Telescope Cylinder Seal Replacement</td>
<td>5-19</td>
</tr>
<tr>
<td>Telescope Cylinder Installation</td>
<td>5-19</td>
</tr>
<tr>
<td>Holding Valve Inspection</td>
<td>5-20</td>
</tr>
<tr>
<td>Platform Level Cylinders</td>
<td>5-21</td>
</tr>
<tr>
<td>Platform Level Cylinder Pin Replacement</td>
<td>5-21</td>
</tr>
<tr>
<td>Level Cylinder Seal Replacement</td>
<td>5-22</td>
</tr>
<tr>
<td>Bleeding the Platform Leveling Circuit</td>
<td>5-22</td>
</tr>
</tbody>
</table>
MECHANICAL COMPONENTS

Following is a description of the major mechanical components of the AT60.

TIRES

Tires used are calcium or optional foam filled. Inspect tires for cuts, sidewall damage or abnormal wear. Any tire faults MUST BE CORRECTED before further machine operation.

CHANGING TIRES

⚠️ WARNING

CALCIUM OR FOAM FILLED TIRES ARE EXTREMELY HEAVY. CARE MUST BE TAKEN TO AVOID PERSONAL INJURY.

When a tire change is necessary, follow these steps:

⚠️ CAUTION

ALWAYS BLOCK THE WHEELS before you raise the machine.

- Loosen and remove lug nuts, and pull off the wheel and tire assembly.
- Replace the tire and reinstall.

NOTE: Tire should have the correct amount of calcium.

- Fasten lug nuts and tighten to proper torque (see Machine Specifications).
- Lower the machine and remove the blocks.

WHEELS AND LUG NUTS

Check the security of the wheel lug nuts (see Machine Specification for proper torque) and examine the wheel rims for damage.

Undercarriage Mechanical Components.
WHEEL MOTOR ASSEMBLY

- Check for any leaks. Check for proper operation. Replace hydraulic wheel motor if damaged.

- To remove front wheel motor:
 1. Block the rear wheels and raise the machine at the front end.

⚠️ WARNING
CALCIUM FILLED AND/OR FOAM FILLED TIRES ARE EXTREMELY HEAVY. CARE MUST BE TAKEN TO AVOID PERSONAL INJURY.

2. Loosen and remove the lug nuts and remove tire and wheel assembly.

⚠️ CAUTION
Plug all open hydraulic fittings to prevent contamination by dirt or other foreign objects.

3. Disconnect hoses and fittings to the wheel motor.

4. Loosen and remove four capscrews and lockwashers holding the motor housing to the drive hub. Also remove the two capscrews holding drive hub to motor housing.

5. Slide out wheel motor and drive hub from motor housing.

6. Remove two capscrews and washers holding wheel motor to drive hub. Separate motor from hub.

7. Replace the two seals located between the wheel motor and drive hub.

- Install front wheel motor:
 1. Attach the wheel motor to the drive hub. Torque the two capscrews. See "Machine Specification".

2. Slide the wheel motor and drive hub into the motor housing. Install and torque the four capscrews with washers. Also install and torque the two capscrews. See "Machine Specification".

3. Install all fittings and hoses.

⚠️ WARNING
CALCIUM FILLED AND/OR FOAM FILLED TIRES ARE EXTREMELY HEAVY. CARE MUST BE TAKEN TO AVOID PERSONAL INJURY.

5. Lower the machine and remove the rear wheel blocks.

Front Tire and Wheel Assembly, and Wheel Motor.
STEER CYLINDER

The steer cylinder is of the double acting type. Check the cylinder for hydraulic fluid leaks.

STEER CYLINDER PINS

Check all pins for wear. If base end pin rotates, check for a missing retaining ring or "L" pin. If wear is detected, the pin must be replaced.

Base End Cylinder Pin Replacement

1. Remove retaining ring.
2. Remove the "L" pin.
3. Remove the base end pin.
4. Install new pin.
5. Install "L" pin and retaining ring.
6. Apply grease to sleeve bearing.

STEER CYLINDER SEAL REPLACEMENT

1. Disconnect the hydraulic hoses.
2. Remove the base end steer cylinder pin.
3. Remove capscrew and top lock nut holding the steer cylinder rod end.
4. Remove the cylinder.

Steer Cylinder and Tie Rod Assembly.
TIE ROD ASSEMBLY

Check for a bent or broken tie rod assembly. Replace if bent or broken.

TIE ROD ASSEMBLY REPLACEMENT

1. Remove capscrews and top locknuts at both ends and steer cylinder rod end.
2. Remove tie rod assembly.
3. Install new tie rod assembly and attach it with the capscrews and top locknuts.
4. Install rod end of steer cylinder.

5. Clean the cylinder.
6. Loosen the end cap (head gland) and withdraw it over the piston rod.

⚠️ CAUTION ⚠️
Take care not to damage the rod surface and guard against dirt entering the system.

7. Remove the rod and piston assembly.
8. Replace the seals and "O"-rings.
9. Install the rod and piston assembly.
10. Install and tighten the end cap (head gland).
11. Install cylinder.
 - Position steer cylinder base end.
 - Install base end steer cylinder pin.
 - Install capscrew and top lock nut holding the steer cylinder rod end.
12. Connect the hydraulic hoses.

SUPERSTRUCTURE

The superstructure consists of two compartments; one is the engine compartment and the other is the hydraulic compartment. Steam clean the superstructure once a year, and inspect all welds and brackets. Check for cylinder pins that turn in their mountings, which will indicate sheared pin lock bolts.

Page 5-6
Components Found on the Superstructure.
Components Found on the Ground Control Assembly.

AT60 FULL HYDRAULIC SERVICE MANUAL
PLATFORM

Steam clean the platform and inspect all welds and brackets. Check all the hydraulic and electrical components.

HOSES AND CABLES

Inspect all hoses and electrical cables for security and damage. Check for leaks at fittings. ANY DAMAGED HOSES OR CABLES SHOULD BE REPLACED.

Cables and hoses should be examined for rubbing and chafing, especially in the swing bearing area and the hose track area.

MISCELLANEOUS EQUIPMENT

Check all miscellaneous equipment mounted on the machine for secure attachment. Check for evidence of oil or hydraulic fluid leakage.
BOOM

LOWER BOOM

Clean the boom once a year and inspect along the boom structure, especially all welds and brackets.

⚠️ WARNING

TO PREVENT PERSONAL INJURY WHILE SERVICING ANY PART OF THE LOWER BOOM, ENSURE THAT IT IS SUPPORTED BY A CRANE AT FRONT AND REAR, AND THAT THE BOOM CARRIES NO LOAD.

LOWER BOOM LIFT CYLINDER

The lower boom lift cylinder is of the double acting type. During operation, the cylinder should not leak, but a slight dampness is acceptable at the rod seal. The pins should be checked for wear. Check the pivot pin lock bolts for tightness. The cylinder and holding valve should be inspected for fluid leakage, damage and security.

LOWER BOOM LIFT CYLINDER REMOVAL

1. Support the upper boom.

2. Disconnect lower lift cylinder from lower boom weldment by removing the pivot pin after taking off retaining ring and bolt and nut.

Lower Boom Components.
3. Disconnect and plug the hydraulic hoses.

⚠️ CAUTION
To prevent damaging internal components of boom lift cylinder, keep hydraulic hose ends free from contamination.

4. Support the cylinder and remove the cylinder base end pin.

5. Remove the cylinder.

LOWER BOOM LIFT CYLINDER REPLACEMENT

1. Carefully position the new cylinder in the machine with the holding valve and hose connections facing upward.

2. Connect the base end of cylinder to the machine by reinstalling the pin and all retainers.

3. Support the rod end of the cylinder and reconnect the hoses to the cylinder.

4. Use the controls to extend or retract the cylinder to align the cylinder so the rod end pin can be installed. Install the pin and retainers.

5. Use plastic wire ties to fasten the hose to the cylinder as it was prior to this installation.

6. Grease both ends of the cylinder pivot pins at the two (2) grease fittings.

7. Raise the platform with the lower controls and remove any blocking, straps, or chains which were used to support the platform.

8. Raise and lower the lower boom several times to confirm correct operation and purge all air from the cylinder. Initially, there may be a hesitation due to the presence of air in the cylinder.

LOWER BOOM LIFT CYLINDER SEAL REPLACEMENT

1. Remove lift cylinder.

⚠️ CAUTION
Take care not to damage the rod surface and guard against dirt entering the system.

2. Remove end gland (head) from lift cylinder.

3. Remove cylinder rod and piston.

4. Remove seals.

5. Replace boom lift cylinder seals.

6. Replace cylinder rod and piston.

7. Secure end gland (head) to lift cylinder.

8. Replace boom lift cylinder in the unit.

LOWER LIFT CYLINDER HOLDING VALVE REPLACEMENT

The holding valve is integrated into the upper side of the lift cylinder. Make certain that all power is off and that the lift cylinder bears no load before proceeding with repairs.

1. Loosen holding valve and wiggle to bleed off any possible hydraulic pressure.

2. Remove valve.

3. When installing new valve, lubricate seals with clean oil and install valve.

4. Torque to 30 to 35 Ft Lbs.
Lower Boom Components.

LOWER BOOM, CYLINDER PIVOT PIN AND BUSHING REPLACEMENT

Pivot pin and bushing removal from the boom and cylinder is required if they are worn or damaged.

1. Support the upper boom.

2. For boom pivot pin and bushing replacement, remove retaining ring and lock bolt from the boom weldment and parallel arm one at a time and replace before proceeding to the next pivot pin and bushing.

 For cylinder pivot pin and bushing replacement, remove retaining ring and lock bolt from one end of the cylinder at a time before proceeding to the other pivot pin and bushing.

 a. Remove the pivot pin.

 b. Split the bushings with a hammer and chisel, and remove them.

 c. Seat replacement bushings, using an arbor press.

 d. Lubricate the new pivot pin with a light grade of oil, and slide it in place.

 e. Replace retaining rings and lock bolt.

3. Grease all the bearing surfaces through the grease fittings with the appropriate lubricant (see Lubrication Chart).
MIDDLE BOOM

Clean the boom once a year and inspect along the boom structure, especially all welds and brackets.

WARNING

TO PREVENT PERSONAL INJURY WHILE SERVICING ANY PART OF THE MIDDLE BOOM, ENSURE THAT IT IS SUPPORTED BY A CRANE AT FRONT AND REAR, AND THAT THE BOOM CARRIES NO LOAD.

MIDDLE BOOM LIFT CYLINDER

The middle boom lift cylinder is of the double acting type. During operation, the cylinder should not leak, but a slight dampness is acceptable at the rod seal. The pins should be checked for wear. Check the pivot pin lock bolts for tightness. The cylinder and holding valve should be inspected for fluid leakage, damage and security.

MIDDLE BOOM LIFT CYLINDER REMOVAL

1. Support the upper boom.

2. Disconnect middle lift cylinder from middle boom weldment by removing the pivot pin after taking off retaining ring and bolt and nut.

3. Disconnect and plug the hydraulic hoses.

CAUTION

To prevent damaging internal components of boom lift cylinder, keep hydraulic hose ends free from contamination.

4. Support the cylinder and remove the cylinder base end pin.

5. Remove the cylinder.

MIDDLE BOOM LIFT CYLINDER REPLACEMENT

1. Carefully position the new cylinder in the machine with the holding valve and hose connections facing upward.

2. Connect the base end of cylinder to the machine by reinstalling the pin and all retainers.

3. Support the rod end of the cylinder and reconnect the hoses to the cylinder.

4. Use the controls to extend or retract the cylinder to align the cylinder so the rod end pin can be installed. Install the pin and retainers.

Middle Boom Components.
5. Use plastic wire ties to fasten the hose to the cylinder as it was prior to this installation.

6. Grease both ends of the cylinder pivot pins at the two (2) grease fittings.

7. Raise the platform with the lower controls and remove any blocking, straps, or chains which were used to support the platform.

8. Raise and lower the middle boom several times to confirm correct operation and purge all air from the cylinder. Initially, there may be a hesitation due to the presence of air in the cylinder.

MIDDLE BOOM LIFT CYLINDER SEAL REPLACEMENT

1. Remove lift cylinder.

 CAUTION

 Take care not to damage the rod surface and guard against dirt entering the system.

2. Remove end gland (head) from lift cylinder.

3. Remove cylinder rod and piston.

4. Remove seals.

5. Replace boom lift cylinder seals.

6. Replace cylinder rod and piston.

7. Secure end gland (head) to lift cylinder.

8. Replace boom lift cylinder in the unit.

MIDDLE LIFT CYLINDER HOLDING VALVE REPLACEMENT

The holding valve is integrated into the upper side of the lift cylinder. Make certain that all power is off and that the lift cylinder bears no load before proceeding with repairs.

1. Loosen holding valve and wiggle to bleed off any possible hydraulic pressure.

2. Remove valve.

3. When installing new valve, lubricate seals with clean oil and install valve.

4. Torque to 30 to 35 ft Lbs.

MIDDLE BOOM AND CYLINDER PIVOT PIN AND BUSHING REPLACEMENT

Pivot pin and bushing removal from the boom and cylinder is required if they are worn or damaged.

1. Support the top boom.

2. For boom pivot pin and bushing replacement, remove retaining ring and lock bolt from the boom weldment and parallel arm one at a time and replace before proceeding to next pivot pin and bushing.

 For cylinder pivot pin and bushing replacement, remove retaining ring and lock bolt from one end of the cylinder at a time before proceeding to the other pivot pin and bushing.

 a. Remove the pivot pin.

 b. Split the bushings with a hammer and chisel, and remove them.

 c. Seat replacement bushings with arbor press.

 d. Lubricate the new pivot pin with a light grade of oil, and slide it in place.

 e. Replace retaining rings and lock pin.

3. Grease all the bearing surfaces through the grease fittings with the appropriate lubricant.
UPPER BOOM

Clean the boom once a year and inspect along the boom structure, especially all welds and brackets.

⚠️ WARNING

TO PREVENT PERSONAL INJURY WHILE SERVICING ANY PART OF THE UPPER BOOM, ENSURE THAT IT IS SUPPORTED BY A CRANE AT FRONT AND REAR, AND THAT THE BOOM CARRIES NO LOAD.

UPPER BOOM LIFT CYLINDER

The upper boom lift cylinder is of the double acting type. During operation, the cylinder should not leak, but a slight dampness is acceptable at the rod seal. The pins should be checked for wear. Check the pivot pin lock bolts for tightness. The cylinder and holding valve should be inspected for fluid leakage, damage and security.

UPPER BOOM LIFT CYLINDER REMOVAL

1. Support the top boom.

2. Disconnect upper lift cylinder from upper boom weldment by removing the pivot pin after taking off retaining rings and bolt and nut.

3. Disconnect and plug the hydraulic hoses.

⚠️ CAUTION

To prevent damaging internal components of boom lift cylinder, keep hydraulic hose ends free from contamination.

4. Support the cylinder and remove the cylinder base end pin.

5. Remove the cylinder.

UPPER BOOM LIFT CYLINDER REPLACEMENT

1. Carefully position the new cylinder in the machine with the holding valve and hose connections facing upward.

2. Connect the base end of cylinder to the upper post by reinstalling the pin and all retainers.

3. Support the rod end of the cylinder and reconnect the hoses to the cylinder.

4. Use the controls to extend or retract the cylinder to align the cylinder so the rod end pin can be installed. Install the pin and retainers.

5. Use plastic wire ties to fasten the hose to the cylinder as it was prior to this installation.

6. Grease both ends of the cylinder pivot pins at the two (2) grease fittings.
7. Raise the platform with the lower controls and remove any blocking, straps, or chains which were used to support the platform.

8. Raise and lower the upper boom several times to confirm correct operation and purge all air from the cylinder. Initially, there may be a hesitation due to the presence of air in the cylinder.

UPPER BOOM LIFT CYLINDER SEAL REPLACEMENT

1. Remove lift cylinder.

 CAUTION

 Take care not to damage the rod surface and guard against dirt entering the system.

2. Remove end gland (head) from lift cylinder.

3. Remove cylinder rod and piston.

4. Remove seals.

5. Replace boom lift cylinder seals.

6. Replace cylinder rod and piston.

7. Secure end gland (head) to lift cylinder.

8. Replace boom lift cylinder in the unit.

UPPER LIFT CYLINDER HOLDING VALVE REPLACEMENT

The holding valve is integrated into the upper side of the lift cylinder. Make certain that all power is off and that the lift cylinder bears no load before proceeding with repairs.

1. Loosen holding valve and wiggle to bleed off any possible hydraulic pressure.

2. Remove valve.

3. When installing new valve, lubricate seals with clean oil and install valve.

4. Torque to 30 to 35 Ft Lbs.

UPPER BOOM AND CYLINDER PIVOT PIN AND BUSHING REPLACEMENT

Pivot pin and bushing removal from the boom and cylinder is required if they are worn or damaged.

1. Support the top boom.

2. For boom pivot pin and bushing replacement, remove retaining ring and lock bolt from the boom weldment and parallel arm one at a time and replace before proceeding to next pivot pin and bushing.

 For cylinder pivot pin and bushing replacement, remove retaining ring and lock bolt from one end of the cylinder at a time before proceeding to the other pivot pin and bushing.

 a. Remove the pivot pin.

 b. Split the bushings with a hammer and chisel, and remove them.

 c. Seat replacement bushings, using an arbor press.

 d. Lubricate the new pivot pin with a light grade of oil, and slide it in place.

 e. Replace retaining rings and lock bolt.

3. Grease all the bearing surfaces through the grease fittings with the appropriate lubricant (see Lubrication Chart).

September, 1995
WEAR PADS

The nylon wear pads should be checked for wear approximately every six months. Fully retract the upper telescope boom section, and check the gap between the top wear pad and the outer boom section, at the front (lower) end of the boom. Inspect the side and bottom pads as well.

Then, extend the boom out, and check the gap between the bottom wear pad and the inner boom section, at the rear (upper) end of the outer boom section. Inspect the side and top pads as well.

⚠️ CAUTION ⚠️

If a pad wears to approximately 3/8" (9.5 mm) thick, it should be replaced. Generally, only the bottom pad at the upper end and the top pad at the lower end of the boom will show wear.

REAR (UPPER END) WEAR PAD REPLACEMENT

1. Remove the bolts holding the bottom spacer and pad.
2. Remove the pad (the boom may need to be extended out a short distance).
3. Install replacement pad by tapping into place, then securing pad and spacer with mounting bolts.

Repeat this procedure for the side and top pads if required.

FRONT (LOWER END) WEAR PAD REPLACEMENT

1. Fully retract the telescope boom section.
2. Remove the pivot pin at the lower (valve block) end of the telescope cylinder, then extend the cylinder from the boom.

Access can now be gained to the front top pad retaining bolts.
3. Remove and replace pad.
4. Retract cylinder and install the pivot pin.
BOOM TELESCOPE CYLINDER

The function of the telescope cylinder is to extend and retract the upper boom segment to allow positioning of the work platform. The double acting cylinder must be removed from the machine before a thorough inspection can be accomplished.

TELESCOPE BOOM CYLINDER PIN REPLACEMENT

1. Operate boom lift to horizontal position.

 ![CAUTION]
 Support the boom any time maintenance is required on the boom or boom cylinders.

2. SUPPORT THE BOOM (on a boom stand or similar rigid platform) at the horizontal position.

3. Remove the retaining ring.

 ![CAUTION]
 The cylinder will fall if not supported when the rod end pin is removed.

4. SUPPORT THE CYLINDER and remove the base end pin.

5. Install new pin, and retaining rings. Cylinder must be lined up for ease of installation.

Teleoscope Cylinder Replacement.
TELESCOPE CYLINDER REMOVAL

1. Elevate the boom to the horizontal position.

 CAUTION
 Support the boom any time maintenance is required on the boom or boom cylinders.

2. Extend the boom until the telescope cylinder rod end mounting pin is exposed.

3. SUPPORT THE EXTENDED TIP BOOM (on a boom stand or similar rigid platform).

4. Remove the pin and snap rings holding the rod end of the telescope cylinder to the tip boom.

5. Disconnect the hydraulic hoses from the telescope cylinder.

6. Remove the retaining rings and pin from the base end of the cylinder.

7. Using a crane, withdraw the cylinder from the boom.

TELESCOPE CYLINDER SEAL REPLACEMENT

1. Remove the end cap from the cylinder.

 CAUTION
 Take care not to damage the rod surface and guard against dirt entering the system.

2. Pull the cap and rod straight out of the cylinder barrel.

3. Remove the nut from the end of the rod.

4. Slip off the piston.

5. Examine the rod and seals for signs of damage or wear.

6. Remove the old seals and backup rings.

7. Install new seals and backup rings.

TELESCOPE CYLINDER INSTALLATION

 CAUTION
 Support the boom any time maintenance is required on the boom or boom cylinders.

1. SUPPORT THE EXTENDED TIP BOOM (on a boom stand or similar rigid platform) IN THE HORIZONTAL POSITION.

2. Using a crane, slide the telescope cylinder into the boom until the rod end mounting holes align with the holes in the tip boom.

3. Install the pin and snap rings holding the rod end of the telescope cylinder to the tip boom.

4. Install the pin, and retaining rings in the base end of the cylinder.

5. Connect the hydraulic hoses to the telescope cylinder.

6. Cycle the telescope cylinder several times to BLEED THE SYSTEM.
HOLDING VALVE INSPECTION

1. Place rated load in the platform, hoist the boom to full elevation and extend the telescope cylinder, then stop the engine.

2. If the telescope cylinder subsequently begins to move, the counterbalance valve is faulty and the cartridge should be replaced.

NOTE: The counterbalance valve is pre-set at the factory and is not adjustable.
PLATEFORM LEVEL CYLINDERS

The platform level system automatically keeps the platform level, using a master/slave cylinder arrangement. As the boom is raised or lowered, fluid is forced from one cylinder to the other in a closed loop, which keeps the platform parallel to the ground in any boom position. The platform level cylinders (master and slave) are of the double acting type.

1. Check pivot pins for wear.
2. Check the pivot pin locking bolts for tightness.
3. Inspect the cylinders for fluid leakage, damage, and security.
4. Replace the seals when the cylinder is serviced.

PLATFORM LEVEL CYLINDER PIN REPLACEMENT

⚠️ CAUTION

Support the platform any time maintenance is required on the level cylinders.

1. SUPPORT THE PLATFORM to remove the load on both master and slave leveling cylinders.
2. Remove the retaining rings, the pin locking capscrew and nut, and remove the pin.
3. Install new pin, capscrew, nut and retaining rings.
4. Apply grease to pin through the grease fitting.
LEVEL CYLINDER SEAL REPLACEMENT

1. Lower the boom all the way.

2. SUPPORT THE PLATFORM to remove the load on the slave leveling cylinder.

3. Remove the lock collar and pin. Slave cylinder seals can be replaced on the machine. Master cylinder must be removed for seal replacement.

4. Clean the cylinder.

5. Unscrew the end cap and pull the cap and rod straight out of the cylinder barrel.

⚠️ CAUTION ⚠️

Take care not to damage the rod surface, and guard against dirt entering the system.

6. Remove the split pin and nut from the end of the rod.

7. Slip off the piston.

8. Examine the rod and seals for signs of damage or wear.

9. Remove the old seals and install a new seal kit.

BLEEDING THE PLATFORM LEVELING CIRCUIT

After a platform level cylinder has been repaired or replaced, or if the platform does not remain level with the raising and lowering of the boom, the platform leveling circuit may need to be bled.

NOTE: Assistance is required in order to perform the bleeding procedure. One person is needed to operate the platform level control, while the second person bleeds the system.

1. With boom retracted, check the hydraulic fluid level in the tank.

⚠️ WARNING ⚠️

HYDRAULIC FLUID WILL BE FORCIBLY EJECTED FROM "B" AND "C" FITTINGS. LOOSEN NIPPLE SLOWLY.

NOTE: The "B" and "C" are marked on the hoses and the fittings are for the hoses marked "B" and "C". If not marked, identify them for your reference.

2. Slightly loosen the "B" and "C" hose fittings at the base of the master leveling cylinder.

3. With the platform near ground, operate the platform level control to move the platform fully backward and forward. Perform procedure five (5) times in order to expel any air from the system.

⚠️ WARNING ⚠️

CARE MUST BE TAKEN WHEN OPERATING LEVEL CONTROL. AIR IN CYLINDERS CAN CAUSE ERRATIC OR JERKY PLATFORM MOTION.

4. Tighten the "B" and "C" hose fittings and replenish the hydraulic tank.

5. Repeat the procedure as required until all air is expelled.

6. After bleeding the leveling circuit, raise boom to full elevation and then fully lower boom to ensure that platform remains level.

7. Check platform level control lever for proper operation.
SECTION 6: MAINTENANCE SCHEDULE
Table of Contents, Section 6

Maintenance Schedule ... 6-3
General Maintenance Tips .. 6-3
First Three Months of Operation ... 6-3
Routine Servicing .. 6-3
Shift Operational Checklist .. 6-6
Weekly Operational Checklist for Severe Usage 6-9
Monthly Operational Checklist .. 6-10
Semi-Annual Operational Checklist 6-12
MAINTENANCE SCHEDULE

The Simon AT 60 is designed to require a minimum amount of maintenance. However, it is essential that the specified services be performed at the indicated intervals, and that the instructions contained in this manual are followed to ensure safety and reliability.

⚠️ DANGER

DEATH OR SERIOUS INJURY MAY RESULT IF MACHINE IS OPERATED IN AN UNSAFE CONDITION. DO NOT OPERATE ANY MACHINE IF IN UNSAFE OPERATING CONDITION.

GENERAL MAINTENANCE TIPS

- ALWAYS clean the surrounding area before opening hydraulic components.

- Never open a hydraulic system when there are contaminants in the air.

- Never leave components or hoses open. They must be protected from contamination (including rain) at all times.

- Use only recommended lubricants (see Lubrication Chart in this manual). Improper lubricants or incompatible lubricants may be as harmful as no lubrication.

- Watch for makeshift "fixes", which can jeopardize safety as well as lead to more costly repairs.

- Any work platform found not to be in safe operating condition should be removed from service until repaired. All repairs should be made by authorized personnel in conformance with the manufacturer's operating, maintenance, and repair manuals.

FIRST THREE MONTHS OF OPERATION

As with any new machine, minor fluid leaks may occur until the various hydraulic components and pipe fittings are fully seated.

It is particularly important that, for the first three months of operation, all hydraulic components, hoses and pipe fittings be checked regularly for leaks and tightness, and corrective action taken as required.

The hydraulic pump, electric motor, cylinders and pressure valves are self-lubricating.

ROUTINE SERVICING

NOTE: The following recommendations are based on advice of our component suppliers, and the requirements of various safety regulations. They should be followed with discretion based on factors such as amount and type of machine usage, environmental conditions, and local safety regulations.

IMPORTANT: Make certain that the unit is inspected per the operational checklists at the end of this section.
SHIFT SERVICE

Hydraulic System

Before checking the hydraulic fluid level, ensure that the machine booms are stowed in the traveling position, and the machine is standing on level ground. Fluid level must be to full mark on sight gauge, located on the side of tank. Refer to Lubrication Chart for correct grade of hydraulic fluid.

Ensure that the filler cap is secure to prevent entry of water or other impurities into the tank.

Tire Condition

Check that the tires are in good condition.

Platform Rails and Safety Gate

Check security of platform and safety gate.

Control Valves

Control valves must be checked for correct operation. Check that all control valve handles automatically return to the center (neutral) position.

Steering

Check the steer cylinder for fluid leakage. Inspect steering linkage for signs of wear.

Batteries

Check the electrolyte level in battery cells. Replenish with distilled water, if necessary.

Pivot Pins

Examine all pivot pins on booms and cylinders to ensure that they are positively secured in position.

Test All Machine Systems

Test the operation of the drive assembly, including drive motor and steering.

Test the operation of all machine boom functions.

Checklist

Perform all items on the Shift Checklist found later in this section.

MONTHLY SERVICE

Hydraulic System

Pressurize the hydraulic circuit and inspect the system for any signs of leakage, particularly at flexible hoses, connections and hydraulic components.

Check hydraulic fluid color. If the hydraulic fluid does not appear clear amber, but has a cloudy appearance, it is usually an indication that water is present. A dark brown color, accompanied by a strong “burnt” smell, indicates that the fluid has overheated. If either condition occurs, a complete hydraulic fluid and filter change will be necessary.

The cause of hydraulic fluid deterioration should be investigated and rectified. Have fluid analyzed by a qualified laboratory.

Chassis Bolts

Check all bolts for signs of looseness. Refer to individual items in the monthly checklist.

Cylinders

Check all cylinders for hydraulic fluid leakage.

Pivot Pins and Grease Fittings

Lubricate all pivot pins and grease fittings.
Platform Mounting

Check that platform weldments and platform frame members are in good condition.

Checklist

Perform all items on the Monthly Checklist found later in this section.

SEMI-ANNUAL SERVICE

Boom Cylinders

Fully retract, then extend the boom lift cylinder. At each extreme position, check that there is no movement between cylinder rod and bearing housing, or between cylinder cap and tube.

Fully retract, then extend the boom telescope cylinder. At each extreme position, check that there is no movement of the cylinder pin.

High Pressure Filter

Change the high pressure filter element.

In severe use applications, more frequent filter changes will be necessary.

Checklist

Perform all items on the Semi-Annual Checklist found later in this section.

ANNUAL SERVICE

NOTE: Machine Annual Inspection Report Forms are available from Simon.

Flexible Hoses

Inspect all hoses over their complete length. Replace any hoses showing looseness or corrosion at the end fittings. Replace hoses exhibiting cracking, blistering or excessive wear of outer protective covering.

Hydraulic Fluid

If the hydraulic system has been properly maintained, the fluid should only need to be changed once each year. This, of course, will depend on machine application, amount of use, temperature, atmospheric conditions and other factors.

Hydraulic Fluid Tank

Carefully check the condition of the fluid inside the tank to ensure that it flows easily and is of clear, amber color. In cases of gross contamination, it will be necessary to completely drain and refill the entire hydraulic system.

Place a suitable waste oil container under the drain tap, or attach a suitable hose from the drain tap to the container.

Open the drain tap, and completely drain the fluid from the tank.

Clean or replace the suction hose, and close the drain tap. Refill the tank to the correct level.

Structural Examination

A thorough examination of the machine should be carried out for signs of corrosion, misalignment, material fractures, and other damage. Particular attention should be given to the condition of welded joints.

FOUR YEAR INTERVAL SERVICE

Pivot Pins and Bearings

Remove the pivot pins for examination. Check the pivot pin bearings with the pivot pins removed. Replace with the correct type of pins and bearings, as necessary.
SHIFT OPERATIONAL CHECKLIST

All checks must be completed before operation of the unit.

These checklists can be copied as needed to aid in performing these inspections.

DATE: _________________________ INSPECTED BY: _________________________

MODEL NUMBER: _______________ SERIAL NUMBER: _________________________

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon machine clean!!

⚠️ WARNING ⚠️

THIS CHECKLIST MUST BE USED AT DAILY INTERVALS OR AFTER EVERY
6 TO 8 HOURS OF USE, WHICHEVER IS SOONER. FAILURE TO DO SO
COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER,
A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT
COSTS.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>1. Perform a visual inspection of all machine components, i.e. structural damage, missing parts, torn or loose hoses, hydraulic fluid leaks, torn or disconnected wires, flat or damaged tires, etc. Open both compartment doors to inspect components inside.</td>
</tr>
<tr>
<td>_______</td>
<td>2. Check battery electrolyte level and connections. Check fuel, engine oil and coolant levels.</td>
</tr>
<tr>
<td>_______</td>
<td>3. Check fire pressure (not required for foam filled).</td>
</tr>
<tr>
<td>_______</td>
<td>4. Check that the lug nuts are tight.</td>
</tr>
<tr>
<td>_______</td>
<td>5. Check hydraulic fluid level. The level should be at the line marked on the sight gauge with the unit in stowed position.</td>
</tr>
<tr>
<td>_______</td>
<td>6. Check that all shutoff valves on hydraulic tank are open (parallel to flow).</td>
</tr>
</tbody>
</table>

Continued on following page . . .
<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7. Check all drive motor nuts for tightness.</td>
</tr>
<tr>
<td></td>
<td>8. Check hoses for worn areas.</td>
</tr>
<tr>
<td></td>
<td>9. Check hose carrier to verify that it is not bent or sagging.</td>
</tr>
<tr>
<td></td>
<td>10. Inspect safety belt connections, and check for worn areas on the belts.</td>
</tr>
<tr>
<td></td>
<td>11. Check platform rails and gate latch step for damage.</td>
</tr>
<tr>
<td></td>
<td>12. Check pivot pins for security.</td>
</tr>
<tr>
<td></td>
<td>13. Check that all warning and instructional labels are legible and secure.</td>
</tr>
<tr>
<td></td>
<td>14. Start engine. Check that hydraulic pressure is as stated in the machine specifications.</td>
</tr>
<tr>
<td></td>
<td>15. Check that the tilt alarm is working properly.</td>
</tr>
<tr>
<td></td>
<td>16. Check that no attempt had been made to override the drive interlock system by a previous operator.</td>
</tr>
<tr>
<td></td>
<td>17. When all pre-inspection checks have been completed, the operator is ready to test the ground controls for proper operation.</td>
</tr>
<tr>
<td></td>
<td>18. Check platform controls for proper operation.</td>
</tr>
<tr>
<td></td>
<td>19. With the platform raised, check for the smooth operation of low speed drive.</td>
</tr>
<tr>
<td></td>
<td>20. Follow engine daily service requirements. Refer to the Engine Maintenance Manual supplied with your unit.</td>
</tr>
</tbody>
</table>

Continued on following page . . .
SHIFT OPERATIONAL CHECKLIST (CONTINUED)

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

NOTE: Do not lubricate wear pads in dusty or sandblast environments. There are boots and guards available to extend unit life in these applications. Consult Simon Aerials Service Department.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21. Inspect cylinder boots, valve spool boots, etc., for cuts or other damage after every eight (8) hours of service. Repair or replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>22. Check hydraulic system for leakage after every eight (8) hours of operation.</td>
</tr>
<tr>
<td></td>
<td>23. Follow engine severe usage service requirements. Refer to the Engine Maintenance Manual supplied with your unit.</td>
</tr>
</tbody>
</table>
WEEKLY OPERATIONAL CHECKLIST FOR SEVERE USAGE

All checks must be completed before operation of the unit.

These checklists can be copied as needed to aid in performing these inspections.

DATE: ____________________________ INSPECTED BY: ____________________________

MODEL NUMBER: __________________ SERIAL NUMBER: __________________

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon machine clean!!

⚠️ WARNING ⚠️

THIS CHECKLIST MUST BE USED AT WEEKLY INTERVALS OR AFTER EVERY
30 HOURS OF USE, WHICHEVER IS SOONER. FAILURE TO DO SO COULD
ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE
PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS ONLY

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>1. Inspect condition of hydraulic fluid in the reservoir. Fluid should have a clear amber color.</td>
</tr>
<tr>
<td>_______</td>
<td>2. Lubricate all pivot and cylinder pin grease fittings (see Lubrication Chart).</td>
</tr>
<tr>
<td>_______</td>
<td>3. Apply proper lubricant to axleland planetary ends, and front torque hubs (see Lubrication Chart).</td>
</tr>
<tr>
<td>_______</td>
<td>4. Apply lubricant to swing bearing gear teeth (see Lubrication Chart).</td>
</tr>
<tr>
<td>_______</td>
<td>5. Spray WD 40 or equivalent penetrating oil on the hydraulic control valve handle pivot pins (including platform level and rotate valve lever pins).</td>
</tr>
<tr>
<td>_______</td>
<td>6. Purge old grease from steering spindles and steering cylinder bearings, tie rod bearings and apply Lithium N.L.G.I. #2 EP.</td>
</tr>
<tr>
<td>_______</td>
<td>7. Follow engine severe duty service requirements. Refer to the Engine Maintenance Manual supplied with your machine.</td>
</tr>
</tbody>
</table>
MONTHLY OPERATIONAL CHECKLIST

DATE: ____________________ INSPECTED BY: ____________________

MODEL NUMBER: ____________ SERIAL NUMBER: ________________

These checklists can be copied as needed to aid in performing these inspections.

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon machine clean!!

⚠️ WARNING

THIS CHECKLIST MUST BE USED AT MONTHLY INTERVALS OR EVERY 100 HOURS, WHICHEVER OCCURS FIRST. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>1. Perform all checks listed on Shift Operational Checklist.</td>
</tr>
<tr>
<td>________</td>
<td>2. Lubricate all boom pivot pins and cylinder pins (see Lubrication Chart).</td>
</tr>
<tr>
<td>________</td>
<td>3. Apply lubricant to swing bearing gear teeth and drive pinion gear teeth (see Lubrication Chart).</td>
</tr>
<tr>
<td>________</td>
<td>4. Inspect condition of hydraulic fluid in the reservoir. Fluid should have a clear amber color.</td>
</tr>
<tr>
<td>________</td>
<td>5. Check hydraulic system for leaks, examine hoses for signs of excessive wear, chafing or twisting. Adjust the hoses and/ or replace them if necessary (refer to your Service Manual).</td>
</tr>
<tr>
<td>________</td>
<td>6. Inspect the work platform and boom structure for signs of damage and broken welds. Check all bolts (including platform rotator bolts) for tightness.</td>
</tr>
<tr>
<td>________</td>
<td>7. Check for structural damage, broken welds, loose bolts, improper or makeshift repairs.</td>
</tr>
</tbody>
</table>

Continued on following page . . .
MONTHLY OPERATIONAL CHECKLIST (CONTINUED)

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8. Check protective rubber cover around hoses at moving anchor, tip boom, boom hose passages, and at swing bearing.</td>
</tr>
<tr>
<td></td>
<td>9. Check torque of wheel lug nuts (see specifications).</td>
</tr>
<tr>
<td></td>
<td>10. Check torque of swing bearing bolts (see specifications).</td>
</tr>
<tr>
<td></td>
<td>11. Check adjustment and security of swing drive. Check torque of swing drive mounting bolts (see specifications). There should be no backlash between the turntable and undercarriage when properly adjusted.</td>
</tr>
<tr>
<td></td>
<td>12. Check oil level in axle differential and planetary ends (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>13. Check front wheel motors mounting bolt torque (see specifications).</td>
</tr>
<tr>
<td></td>
<td>14. Check that the boom does not drift with a full load, no hydraulic pressure (engine off) and the control valve in the "BOOM DOWN" position.</td>
</tr>
<tr>
<td></td>
<td>15. Check to make sure boom sections are not dented or bent.</td>
</tr>
<tr>
<td></td>
<td>16. Check that all adjustable flow valves are locked.</td>
</tr>
<tr>
<td></td>
<td>17. Check fuel shutoff rack for proper operation. Loosen lever arm and lubricate with WD-40 or equivalent.</td>
</tr>
<tr>
<td></td>
<td>18. Lubricate boom wear pads (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>19. Lubricate hydraulic control handle pivot pins (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>20. Lubricate steering spindles (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>21. Lubricate steering cylinder bearings (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>22. Lubricate tie rod bearings (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>23. Follow engine monthly service requirements. Refer to the Engine Maintenance Manual supplied with your machine.</td>
</tr>
</tbody>
</table>

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

EVERY 90 DAYS

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24. Change high pressure filter and emergency pump filter elements.</td>
</tr>
<tr>
<td></td>
<td>25. Analyze hydraulic fluid.SEMI-ANNUAL operational checklist</td>
</tr>
</tbody>
</table>
These checklists can be copied as needed to aid in performing these inspections.

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected. Keep your Simon machine clean!!

WARNING

THIS CHECKLIST MUST BE USED AT SIX MONTH INTERVALS OR EVERY 500 HOURS, WHICHEVER IS SOONER. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>1. Perform all checks listed on Shift and Monthly Operational Checklists.</td>
</tr>
<tr>
<td>______</td>
<td>2. Have hydraulic fluid sample analyzed at a test laboratory. Comply with test results and recommendations to ensure long, trouble free operation.</td>
</tr>
</tbody>
</table>

NOTE: If hydraulic fluid has been regularly maintained, it should only require changing once every year, depending on maintenance, temperature, application, duty cycle, and atmospheric conditions.

______	3. Clean and lubricate all electrical switches with an electrical contact cleaner and ensure that the switches operate freely in all positions.
______	4. Check the electrical mounting and hardware connections for security.
______	5. Replace hydraulic filter element (earlier replacement if reduced speed of drive function is indicated).
______	6. Lubricate all valve spool linkages.

INITIAL | DESCRIPTION

Continued on following page . . .
7. Clean and lubricate the swing bearing gear teeth with Keystone Moly #29.

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>9. Drain and replace fluid from front torque hubs, and planetary axles (rear).</td>
</tr>
<tr>
<td>_______</td>
<td>11. Follow engine severe usage service requirements. Refer to the Engine Maintenance Manual supplied with your unit.</td>
</tr>
</tbody>
</table>
SECTION 7:
TROUBLESHOOTING
Table of Contents, Section 7

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Troubleshooting Tips</td>
<td>7-3</td>
</tr>
<tr>
<td>Troubleshooting Chart</td>
<td>7-4</td>
</tr>
<tr>
<td>Index to Troubleshooting Chart</td>
<td></td>
</tr>
<tr>
<td>All hydraulic functions inoperative</td>
<td>7-10</td>
</tr>
<tr>
<td>Boom drifts down without lever activation</td>
<td>7-11</td>
</tr>
<tr>
<td>Boom drifts down without lever actuated with power</td>
<td>7-10</td>
</tr>
<tr>
<td>Boom track cross braces breaking</td>
<td>7-5</td>
</tr>
<tr>
<td>Boom track sagging</td>
<td>7-6</td>
</tr>
<tr>
<td>Cavitation, a gaseous condition within the fluid</td>
<td>7-5</td>
</tr>
<tr>
<td>Drive function does not operate from ground</td>
<td>7-11</td>
</tr>
<tr>
<td>Drive function does not operate from platform</td>
<td>7-11</td>
</tr>
<tr>
<td>Engine won't crank</td>
<td>7-6</td>
</tr>
<tr>
<td>Excessive hydraulic pump pressure</td>
<td>7-8</td>
</tr>
<tr>
<td>Excessive heat</td>
<td>7-4</td>
</tr>
<tr>
<td>Extend or retract function from platform—none</td>
<td>7-13</td>
</tr>
<tr>
<td>Function chatter</td>
<td>7-9</td>
</tr>
<tr>
<td>Hydraulic functions slow</td>
<td>7-8</td>
</tr>
<tr>
<td>Hydraulic pump and fluid line vibration</td>
<td>7-9</td>
</tr>
<tr>
<td>Hydraulic pump noise or squeal</td>
<td>7-10</td>
</tr>
<tr>
<td>Hydraulic pump output—none</td>
<td>7-7</td>
</tr>
<tr>
<td>Hydraulic pump shaft seal failure</td>
<td>7-9</td>
</tr>
<tr>
<td>Lift cylinder drifts</td>
<td>7-7</td>
</tr>
<tr>
<td>Lift function from platform—none</td>
<td>7-12</td>
</tr>
<tr>
<td>Low hydraulic pump output</td>
<td>7-8</td>
</tr>
<tr>
<td>Low speed drive</td>
<td>7-17</td>
</tr>
<tr>
<td>Movement alarm will not sound</td>
<td>7-7</td>
</tr>
<tr>
<td>Platform does not level properly (platform drifting)</td>
<td>7-15</td>
</tr>
<tr>
<td>Platform level selector valve body cracked or blown</td>
<td>7-15</td>
</tr>
<tr>
<td>Platform rotate selector valve body cracked or blown</td>
<td>7-14</td>
</tr>
<tr>
<td>Platform will not react to platform rotate control</td>
<td>7-14</td>
</tr>
<tr>
<td>Poor lubrication, parts break through lubricant</td>
<td>7-4</td>
</tr>
<tr>
<td>Slow hydraulic pump response</td>
<td>7-8</td>
</tr>
<tr>
<td>Steer function from ground—none</td>
<td>7-11</td>
</tr>
<tr>
<td>Swing function from platform—none</td>
<td>7-13</td>
</tr>
<tr>
<td>Steer selector valve body cracked or blown</td>
<td>7-16</td>
</tr>
<tr>
<td>Swing gear pinion shaft, tooth and/or ring bearing</td>
<td>7-14</td>
</tr>
<tr>
<td>Swing motor will not run in either direction</td>
<td>7-13</td>
</tr>
<tr>
<td>Telescope, swing, or hoist functions</td>
<td>7-10</td>
</tr>
<tr>
<td>Throttle actuator</td>
<td>7-6</td>
</tr>
<tr>
<td>Unit will not go into high speed drive</td>
<td>7-17</td>
</tr>
<tr>
<td>Unit will not steer; all other functions operate</td>
<td>7-15</td>
</tr>
<tr>
<td>Varnish</td>
<td>7-4</td>
</tr>
<tr>
<td>Water in hydraulic fluid</td>
<td>7-4</td>
</tr>
<tr>
<td>Wheel drive motor failure</td>
<td>7-16</td>
</tr>
</tbody>
</table>
GENERAL TROUBLESHOOTING TIPS

Before investigating a malfunction, check the following items:

- The Main Power Key Switch should be in the "GROUND" or "PLATFORM" position.
- The Foot Pedal Switch is pressed in and held for platform console operation.
- Pump Selector Switch is pressed and held for ground control operation.
- Check that battery connections are secure and battery is fully charged.
- Check that the Emergency Stop Button(s) are released.
- Check that the hydraulic reservoir ball valves are open.
- Check that hydraulic fluid is at the correct level.

Common Causes of Hydraulic System Malfunctions:

- Mixing incompatible hydraulic fluids, destroying the additives and causing varnish build up resulting in sticking valves.
- Water in the hydraulic fluid due to a damp climate and loss of reservoir pressurization.
- Improper viscosity hydraulic fluid; too high in a cold climate, too low in a warm climate.

NOTE: Mobil DTE-13M is recommended as a general purpose fluid suitable for all but the most extreme environmental conditions.

- Fuel in the hydraulic fluid, which lowers the viscosity and lubricity of the fluid.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Excessive heat causing excessive wear on seals and metal parts due to lowered hydraulic fluid viscosity. Symptoms to watch for are: pump case turns brown, hydraulic fluid darkens and premature pump failure.</td>
<td>• Excessive water in the hydraulic fluid.</td>
<td>• Drain, flush and refill hydraulic system.</td>
</tr>
<tr>
<td></td>
<td>• Improper oil viscosity.</td>
<td>• Drain, flush and refill hydraulic system with the correct fluid.</td>
</tr>
<tr>
<td></td>
<td>• Improper lubrication and hydraulic fluid.</td>
<td>• Drain and flush hydraulic system.</td>
</tr>
<tr>
<td></td>
<td>• Pump cam bearing failure.</td>
<td>• Rebuild pump as required.</td>
</tr>
<tr>
<td></td>
<td>• Foot pedal blocked to the "ON" position.</td>
<td>• Unblock foot pedal.</td>
</tr>
<tr>
<td>• Water in hydraulic fluid. Symptoms to watch for are: pitting and etching of pump pistons and pump piston cam wear causing heat build up and premature pump failure.</td>
<td>• Damp climate.</td>
<td>• Drain and flush hydraulic system.</td>
</tr>
<tr>
<td></td>
<td>• Hydraulic fitting or port open to contaminants.</td>
<td>• Drain and flush hydraulic system. Replace worn pump components.</td>
</tr>
<tr>
<td>• Varnish, the dark brownish residue left from oxidation of hydraulic fluids. Symptoms to watch for are: pistons, spools and moving parts with close tolerances tend to stick and hang up.</td>
<td>• Mixing of incompatible fluids or poor quality fluids.</td>
<td>• Drain and flush hydraulic system, then fill with recommended hydraulic fluid.</td>
</tr>
<tr>
<td></td>
<td>• Excessive heating of the fluids.</td>
<td>• Drain and flush hydraulic system, then fill with recommended hydraulic fluid.</td>
</tr>
<tr>
<td>• Poor lubrication, parts break through lubricant causing metal to metal contact. Symptoms to watch for are: heads of pump pistons worn and excessive heat build up.</td>
<td>• Hydraulic fluid viscosity low.</td>
<td>• Drain and flush hydraulic system, then fill with recommended hydraulic fluid.</td>
</tr>
<tr>
<td></td>
<td>• Improper or poor grade hydraulic fluid or lubricant without anti-wear additives.</td>
<td>• Drain and flush hydraulic system, then fill with recommended hydraulic fluid.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Cavitation, a gaseous condition within the fluid stream where the pressure is reduced to the vapor pressure of the fluid. The higher the system pressure the more violent the reaction will be. Symptoms to watch for are: pitting and etching of pump pistons.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Low reservoir fluid level.</td>
<td>• Add hydraulic fluid.</td>
<td></td>
</tr>
<tr>
<td>• Air leaks in suction line.</td>
<td>• Repair any suction hose leaks.</td>
<td></td>
</tr>
<tr>
<td>• Improper hydraulic fluid.</td>
<td>• Have fluid analyzed regularly and drain and flush hydraulic system, then fill with recommended hydraulic fluid.</td>
<td></td>
</tr>
<tr>
<td>• Vaporization of water.</td>
<td>• Have fluid analyzed regularly and drain and flush hydraulic system, then fill with recommended hydraulic fluid.</td>
<td></td>
</tr>
<tr>
<td>• Hydraulic fluid system has not been warmed before using full system pressure.</td>
<td>• Warm up system before using full system pressure.</td>
<td></td>
</tr>
<tr>
<td>• Pump/ engine speed too high.</td>
<td>• Ensure reservoir pressurization is operating properly and adjust engine speed.</td>
<td></td>
</tr>
<tr>
<td>Boom track cross braces breaking.</td>
<td>Hoses wearing in the boom track.</td>
<td>Check hydraulic pressure and adjust if necessary.</td>
</tr>
<tr>
<td></td>
<td>System pressure too high, causing boom hoses to shrink more than normal.</td>
<td>Check hydraulic pressure and adjust if necessary.</td>
</tr>
<tr>
<td></td>
<td>Hoses too tight in the track.</td>
<td>Provide more hose slack.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Boom track sagging.</td>
<td>Track pin holes stretched.</td>
<td>Check track support and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Worn track channels</td>
<td>Check track channels and replace track if necessary.</td>
</tr>
<tr>
<td></td>
<td>Improper lubrication and cleaning.</td>
<td>Follow proper lubrication and cleaning procedures.</td>
</tr>
<tr>
<td>Engine won’t crank.</td>
<td>Starter motor relay.</td>
<td>A breakdown in any one of these components will cause the engine not to crank. Trace the available voltage to starter motor relay. Replace the faulty component(s).</td>
</tr>
<tr>
<td></td>
<td>Starter motor interlock relay.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low oil pressure switch.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power relay.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground/ platform switch.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground/ platform ignition switch.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engine failure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Footswitch depressed/blocked</td>
<td>Unblock footswitch.</td>
</tr>
<tr>
<td>Throttle solenoid doesn’t work.</td>
<td>Throttle high speed relay.</td>
<td>A breakdown in any one of these components will cause the solenoid not to function. Trace the available voltage to the throttle solenoid. Replace the faulty component(s).</td>
</tr>
<tr>
<td></td>
<td>A solenoid failure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Throttle timer relay solenoid.</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Movement alarm will not sound.</td>
<td>• Broken wire or connection in the horn circuit.</td>
<td>• Trace the available voltage to the horn.</td>
</tr>
<tr>
<td></td>
<td>• Horn is faulty.</td>
<td>• Replace the faulty component.</td>
</tr>
<tr>
<td>Lift cylinder drifts down.</td>
<td>• Counterbalance valve cartridge dirty or faulty.</td>
<td>• Clean, repair or replace the counterbalance valve.</td>
</tr>
<tr>
<td></td>
<td>• Cylinder piston seals are damaged.</td>
<td>• Replace cylinder seals.</td>
</tr>
<tr>
<td>No hydraulic pump output</td>
<td>• Water in hydraulic fluid.</td>
<td>• Drain and flush hydraulic system.</td>
</tr>
<tr>
<td></td>
<td>• Improper oil viscosity.</td>
<td>• Use correct fluid. See Lubrication Chart.</td>
</tr>
<tr>
<td></td>
<td>• Faulty pump stroke valve.</td>
<td>• Check solenoid operation.</td>
</tr>
<tr>
<td></td>
<td>• Hydraulic fittings loose or ports open.</td>
<td>• Close ports and tighten fittings. Drain and flush hydraulic system.</td>
</tr>
<tr>
<td></td>
<td>• Pump cam bearing failure.</td>
<td>• Replace pump.</td>
</tr>
<tr>
<td></td>
<td>• Broken pump drive shaft.</td>
<td>• Check for broken pump drive shaft and replace if broken.</td>
</tr>
<tr>
<td></td>
<td>• Compensator valve malfunction.</td>
<td>• Check for improper compensator adjustment and correct adjustment or re-</td>
</tr>
<tr>
<td></td>
<td>• Fluid leaks.</td>
<td>place valve.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for circuit leakage and fluid at pump inlet.</td>
</tr>
</tbody>
</table>
Troubleshooting Chart (Continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Low hydraulic pump pressure.</td>
<td>• Low pressure.</td>
<td>• Check and adjust for correct pressure if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Component failure.</td>
<td>• Check for compensator valve, seal, spring or packing failure and replace if damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for worn or scored pistons and bores; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check discharge valve or spring; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check for restricted inlet or insufficient inlet fluid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check pump stroking valve.</td>
</tr>
<tr>
<td>• Hydraulic functions slow.</td>
<td>• Low hydraulic pump pressure.</td>
<td>• Check and adjust for correct pressure if necessary.</td>
</tr>
<tr>
<td></td>
<td>• Hydraulic high pressure filter contaminated.</td>
<td>• Check for dirty hydraulic high pressure filter; replace filter element.</td>
</tr>
<tr>
<td></td>
<td>• Pump component failure.</td>
<td>• Check compensator valve, seal, spring or packing failure. Replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>• Plugged orifice in valve.</td>
<td>• Clean valve.</td>
</tr>
<tr>
<td></td>
<td>• Valve spool not completely shifting.</td>
<td>• Check/ clean valve spool.</td>
</tr>
<tr>
<td>• Slow hydraulic pump response.</td>
<td>• High pressure filter contaminated.</td>
<td>• Check for dirty high pressure filter.</td>
</tr>
<tr>
<td>• Excessive hydraulic pump pressure.</td>
<td>• Improper compensator adjustment.</td>
<td>• Adjust compensator valve and replace if necessary.</td>
</tr>
</tbody>
</table>

Page 7-8
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Broken pump components.</td>
<td>Check for sticking pump pistons; replace if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for broken discharge valve or spring; replace if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for broken inlet valve; replace if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for charge system leakage.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for pump suction air leak.</td>
</tr>
<tr>
<td>Hydraulic pump and fluid line vibration.</td>
<td>Component failure.</td>
<td>Check for broken discharge valve or spring; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for leaking or broken inlet valve; replace if damaged.</td>
</tr>
<tr>
<td>Hydraulic pump shaft seal failure.</td>
<td>High pressure.</td>
<td>Check for overpressurized seal drain line; reduce pressure and replace seal.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Hydraulic pump noise or squeal.</td>
<td>Relief valve setting.</td>
<td>Check for low deadhead pressure and adjust for correct pressure.</td>
</tr>
<tr>
<td></td>
<td>Component failure.</td>
<td>Check for compensator valve, seat, spring or packing failure and replace if damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for leaking inlet valve; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for air leak at inlet connections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for insufficient inlet fluid (cavitation).</td>
</tr>
<tr>
<td>All hydraulic functions inoperable.</td>
<td>Low fluid in reservoir.</td>
<td>Fill to proper level.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic pump compens-</td>
<td>Adjust or repair</td>
</tr>
<tr>
<td></td>
<td>ator out of adjustment.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>Hydraulic pump defective.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>Faulty pump stroke valve.</td>
<td></td>
</tr>
<tr>
<td>Telescope, swing, or lift functions don't operate using ground control.</td>
<td>Valve is stuck.</td>
<td>Manually engage spool.</td>
</tr>
<tr>
<td></td>
<td>Defective counterbalance valve.</td>
<td>Check counterbalance valve; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>Pump stroke valve.</td>
<td>Check valve for operation.</td>
</tr>
<tr>
<td>Boom drifts down without lever actuated with power on or off.</td>
<td>Defective counterbalance valve.</td>
<td>Check counterbalance valve; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>Bad cylinder piston seal.</td>
<td>Check for leaking seals and replace, as required.</td>
</tr>
</tbody>
</table>
Troubleshooting Chart (Continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom drifts down without lever activation but with power on; does not drift down with power off.</td>
<td>• Mechanical failure.</td>
<td>• Check that ground and platform boom control levers return to their neutral position.</td>
</tr>
<tr>
<td>No drive function from platform.</td>
<td>• Faulty valve coil.</td>
<td>• Check coil for operation.</td>
</tr>
<tr>
<td>• No hydraulic fluid flow available to the drive motors.</td>
<td>• Drive motors are damaged.</td>
<td>• Test for available fluid flow at the drive motors.</td>
</tr>
<tr>
<td>• Drive valve spool is stuck.</td>
<td>• Low speed flow controls are closed.</td>
<td>• Inspect, repair or replace.</td>
</tr>
<tr>
<td>• Drive enable valve faulty.</td>
<td></td>
<td>• Manually engage and check for proper operation. Replace if faulty.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Adjust for proper speed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Inspect, repair or replace.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>No lift function from platform.</td>
<td>Mechanical failure.</td>
<td>Check that ground and platform boom control levers return to their neutral position.</td>
</tr>
<tr>
<td></td>
<td>Lift spool valve stuck.</td>
<td>Manually engage lift (hoist) spool and check for operation.</td>
</tr>
<tr>
<td></td>
<td>Defective counterbalance valve.</td>
<td>Check counterbalance valve for foreign material or internal damage; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>Faulty cylinder.</td>
<td>Plugged lines, cylinder ports or damaged cylinder packings. Inspect, repair or replace cylinder.</td>
</tr>
<tr>
<td></td>
<td>Pump not coming on stroke.</td>
<td>Check pump stroke circuit.</td>
</tr>
<tr>
<td></td>
<td>Drive enable valve energized.</td>
<td>Check valve for voltage, or open cartridge.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>No extend or retract function from platform.</td>
<td>Spool valve stuck.</td>
<td>Manually engage spool and check for proper operation. Replace if faulty.</td>
</tr>
<tr>
<td></td>
<td>Mechanical failure.</td>
<td>Check that ground and platform boom control levers return to neutral position.</td>
</tr>
<tr>
<td></td>
<td>Pressure reducing valve possibly leaking to tank.</td>
<td>Inspect, clean and retest. Replace if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective counterbalance valve.</td>
<td>Check counterbalance valve for foreign material or internal damage; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>High pressure filter dirty.</td>
<td>Check for a dirty high pressure filter; replace filter element if dirty.</td>
</tr>
<tr>
<td></td>
<td>Drive enable valve energized.</td>
<td>Check valve for voltage, or open cartridge.</td>
</tr>
<tr>
<td>No swing function from platform.</td>
<td>Spool valve stuck.</td>
<td>Manually engage swing spool and check for proper operation. Replace if faulty.</td>
</tr>
<tr>
<td></td>
<td>Drive enable valve energized.</td>
<td>Check valve for voltage, or open cartridge.</td>
</tr>
<tr>
<td>Swing motor will not run in either direction.</td>
<td>Mechanical malfunction.</td>
<td>Check for obstruction between the pinion gear and swing bearing; remove the obstruction. Swing motor shaft is broken or seized; replace the swing motor.</td>
</tr>
<tr>
<td></td>
<td>Drive enable valve energized.</td>
<td>Swing gearbox worm gear is broken; replace shaft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check valve for voltage, or open cartridge.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Swing worm gear failure.</td>
<td>Excessive side loading of boom.</td>
<td>Check for excessive side loading of boom; correct the situation and replace rotation bearing if teeth damaged.</td>
</tr>
<tr>
<td></td>
<td>Unit throttling not being used, causing instant on and off of the swing motor.</td>
<td>Check that the foot pedal is depressed before the lever is activated.</td>
</tr>
<tr>
<td>Platform will not react to platform rotate control movement.</td>
<td>Double pilot operated check valve (relief valve).</td>
<td>Install valve correctly. Check the valve cartridge and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Valve spool leakage.</td>
<td>Check for internal leakage of the valve spool; replace.</td>
</tr>
<tr>
<td></td>
<td>Mechanical malfunction.</td>
<td>If platform rotates only in one direction, check for physical constraints or foreign material restricting platform rotation; remove foreign material.</td>
</tr>
<tr>
<td></td>
<td>Plugged valve orifice.</td>
<td>Clean orifice.</td>
</tr>
<tr>
<td>Platform rotate selector valve body cracked or blown body seal.</td>
<td>Excessive system pressure.</td>
<td>Check that there is no back pressure on the return port. Check that inlet and return hoses are connected.</td>
</tr>
<tr>
<td></td>
<td>Blocked hoses.</td>
<td>Check for blocked or partially blocked return hoses.</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING CHART (CONTINUED)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Platform does not level properly (platform drifting).</td>
<td>• Damaged parts.</td>
<td>• Check for damaged parts such as bent pins or elongated pin holes, slave cylinder seals; replace damaged parts.</td>
</tr>
<tr>
<td></td>
<td>• Defective counterbalance valve.</td>
<td>• Check counterbalance valve for foreign material or internal damage; replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>• Defective double pilot operated check valve.</td>
<td>• Repair or replace as necessary.</td>
</tr>
<tr>
<td>• Platform level selector valve body cracked or blown body seal.</td>
<td>• Excessive system pressure.</td>
<td>• Check that there is no back pressure on the return port. Check that inlet and return hoses are connected.</td>
</tr>
<tr>
<td></td>
<td>• Blocked hoses.</td>
<td>• Check for blocked or partially blocked return hoses.</td>
</tr>
<tr>
<td>• Unit will not steer; all other functions operate.</td>
<td>• Steer cylinder may not be mechanically connected to steering linkage.</td>
<td>• Check for disconnected, binding or damaged steering linkage; connect or replace steering linkage as necessary.</td>
</tr>
<tr>
<td></td>
<td>• Steering directional control valve.</td>
<td>• The steering directional control valve may not be shifting. The valve spools may be stuck. The directional control valve may be defective or a valve spool obstructed. Remove valve and inspect, clean, repair or replace as needed.</td>
</tr>
<tr>
<td></td>
<td>• Faulty steer coils.</td>
<td>• Check steer coils.</td>
</tr>
<tr>
<td></td>
<td>• Faulty steer switch.</td>
<td>• Check steer switch.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Steer selector valve body cracked or blown body seal.</td>
<td>• Excessive system pressure.</td>
<td>• Check that there is no back pressure on the return port. Check that inlet and return hoses are connected.</td>
</tr>
<tr>
<td></td>
<td>• Blocked hoses.</td>
<td>• Check for blocked or partially blocked return hoses.</td>
</tr>
<tr>
<td>Wheel drive motor failure.</td>
<td>• Contaminated hydraulic fluid.</td>
<td>• Check for contamination of hydraulic fluid; drain, flush system and replace with the correct grade of hydraulic fluid.</td>
</tr>
<tr>
<td></td>
<td>• Wheel drive motor component failure.</td>
<td>• Replace the motor. If one motor failed, internal loose or broken pieces will eventually flow into the opposite motor causing that motor to fail, unless lines are properly cleaned. Drain, flush system and replace hydraulic fluid after replacing broken component.</td>
</tr>
<tr>
<td></td>
<td>• Wheel bearing failure.</td>
<td>• Check for proper installation of wheel bearing.</td>
</tr>
<tr>
<td></td>
<td>• Machine has been towed with drive motor engaged.</td>
<td>• Do not tow the machine if not equipped with the tow package.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Low speed drive valve inoperative in low speed drive mode only.</td>
<td>Valve spool stuck.</td>
<td>Check for a sticking spool; replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>High speed drive valve coil.</td>
<td>Check resistance in the high speed drive valve coil. Each coil should have 4 ohms resistance, if valve has less than 4 ohms resistance, excessive voltage will feed across the coil to the opposite coil of the low speed valve trying to be operated. Thus both coils are trying to actuate. Replace high speed drive coil if necessary.</td>
</tr>
<tr>
<td></td>
<td>Flow controls closed or plugged.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faulty switch.</td>
<td></td>
</tr>
<tr>
<td>Unit will not go into high speed drive with boom retracted and lowered.</td>
<td>High pressure filter dirty.</td>
<td>Replace filter element.</td>
</tr>
<tr>
<td></td>
<td>Hi speed drive valve faulty.</td>
<td>Repair or replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Boom limit switches faulty or broken limit switch arm.</td>
<td>Check wiring or replace switches.</td>
</tr>
<tr>
<td></td>
<td>Faulty switch.</td>
<td>Check switch continuity.</td>
</tr>
</tbody>
</table>
INDEX
Index

B
- Battery Maintenance (In Use) 4-3
- Battery Replacement 4-4
- Battery Troubleshooting 4-4
- Boom 5-10
- Boom Lift Cylinders 2-17
- Boom Lift System 2-16
- Boom, Lower 5-10
- Boom, Lower Lift Cylinder 5-10
- Boom, Lower Lift Cylinder Seal Replacement ... 5-11
- Boom, Lower Lift Cylinder Seal Replacement ... 5-11
- Boom, Middle 5-13
- Boom, Middle Lift Cylinder 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Middle Lift Cylinder Seal Replacement ... 5-14
- Boom, Upper 5-15
- Boom, Upper Lift Cylinder 5-16
- Boom, Upper Lift Cylinder Removal 5-15
- Boom, Upper Lift Cylinder Replacement 5-15
- Boom, Upper Lift Cylinder Seal Replacement 5-16

C
- Checklist, Monthly Operational 6-10
- Checklist, Semi-Annual Operational 6-12
- Checklist, Shift Operational 6-6
- Checklist, Weekly Operational for Severe Usage ... 6-9
- Checks, Electrical and Continuity 4-11
- Circuit Breaker 4-8
- Circuit, Drive Control Handle 4-5
- Circuit, Ground Ignition 4-5
- Circuit, Platform Ignition 4-5
- Circuit, Pump 4-5
- Component Locator, Lower Boom xii
- Component Locator, Middle Boom xiii
- Component Locator, Platform xv
- Component Locator, Superstructure xi
- Component Locator, Undercarriage x
- Component Locator, Upper Boom xiv

D
- Drive Motor, Front Wheel 3-3
- Drive Motor, Hydraulic 3-3
- Drive Motor, Rear Axle 3-4
- Drive Motor, Rear Axle Replacement 3-4
- Drive Motors 3-3
- Drive System Components 3-3
- Drive/ Steer Manifold Assembly 2-24

E
- Electrical System 4-3
- Electrical Theory of Operation 4-5
- Emergency Electrical Pump 1-10
- Emergency Lowering 1-11
- Emergency Pump 2-13
- Emergency Pump Adjustment 2-13
- Emergency Stop Button 4-6
- Emergency System and Procedures 1-10

F
- First Three Months of Operation 6-3
- Foot Pedal Switch 4-7

G
- Gauge, Engine Oil Pressure 4-9
- Ground Control Box 4-8

H
- High Pressure Filter 2-14
- High Pressure Filter Element 2-14
- Hoses and Cables 5-9
- Hour Meter 4-8
- Hydraulic Fluid 2-5
- Hydraulic Fluid Contamination Checks 2-5
- Hydraulic Fluid Handling Precautions 2-5
- Hydraulic Fluid Recommendations 2-5
- Hydraulic Fluid Reservoir 2-14
- Hydraulic Pump (Type 1) 2-9
- Hydraulic Pump (Type 2) 2-11
- Hydraulic Pump, Type One (1) Adjustment ... 2-10
- Hydraulic Pump, Type Two (2) Adjustment ... 2-13
- Hydraulic Pumps 2-9
- Hydraulic Reservoir Maintenance 2-14
- Hydraulic System Components 2-9
- Hydraulic System Flushing Procedure 2-6
Index (Continued)

I
Ignition Switch ... 4-6
Introduction .. vi

K
Key Switch ... 4-8

L
Level Cylinder, Master 2-22
Level Cylinder Seal Replacement 5-22
Level Cylinder, Slave 2-22
Level Cylinders, Platform 5-21
Level, Platform Cylinder Pin Replacement 5-21
Leveling Circuit, Bleeding the Platform 5-22
Leveling System, Platform 2-22
Lifting the Unit ... 1-6
Limit Switch .. 4-10
Lubrication Chart .. xvi

M
Machine Components ... ix
Machine Specifications viii
Maintenance Schedule 6-3
Maintenance Tips, General 6-3
Miscellaneous Equipment 5-9
Motor, Wheel Assembly 5-4
Movement Alarm .. 4-9

P
Pendant Control (Option) 4-9
Platform .. 5-9
Platform Control Box 4-6
Push Button .. 4-6, 4-8

R
Rear Axle Assembly 3-6
Rear Axle Assembly Replacement 3-4
Rear Axle Brake Adjustment 3-6
Relays ... 4-10
Rotary Actuator .. 2-21
Rotate System, Platform 2-21

S
Service, Four Year Interval 6-5
Servicing, Routine ... 6-3
Steer Cylinder ... 2-24, 5-5
Steer Cylinder Pins .. 5-5
Steer Cylinder Seal Replacement 5-5
Steer System .. 2-24
Steer System Maintenance 2-24
Superstructure ... 5-6
Swing Drive Motor/Reducer Assembly 2-20
Swing System .. 2-20
Swivel, Hydraulic .. 2-24

T
Telescope Boom Cylinder Pin Replacement 5-18
Telescope Cylinder ... 5-18
Telescope Cylinder Installation 5-19
Telescope Cylinder Removal 5-19
Telescope Cylinder Seal Replacement 5-19
Tie Rod Assembly .. 5-6
Tie Rod Assembly Replacement 5-6
Tilt Alarm .. 4-9
Tilt Alarm Sensor Adjustment 4-10
Tilt Alarm Test ... 4-10
Tires .. 5-3
Tires, Changing .. 5-3
Toggle Switch ... 4-6, 4-8, 4-9
Transporting the Unit 1-4

U
Unloading Procedures 1-8
Unpowered Emergency Movement 1-10
Index (Continued)

V
Valve Assembly, Drive/Brake 2-15, 3-7
Valve Assembly, Hydraulic Manifold 3-8
Valve, Brake Needle 2-15, 3-7
Valve, Brake Shuttle 2-15, 3-7
Valve, Directional Control 2-20
Valve, Double Counterbalance (Swing) 2-20
Valve, Double Relief 2-16, 3-8
Valve, Drive Cushion Solenoid 2-16, 3-8
Valve, Drive Enable 3-8
Valve Holding, Inspection 5-20
Valve Holding, Lower Lift Cylinder Replacement 5-11
Valve Holding, Middle Lift Cylinder Replacement 5-14
Valve Holding, Upper Lift Cylinder Replacement 5-16
Valve, Level Control 2-22
Valve, Motion Control 2-15, 3-7
Valve, Pressure Reducing 2-16, 2-18, 3-8
Valve, Rotate Control 2-21
Valve, Rotator Pressure Relief, Platform 2-21
Valve, Solenoid Checks 2-25
Valve, Two Speed Drive 2-16, 3-8
Valves, Directional Control 2-16, 2-18
Valves, Double Pilot Operated Check 2-22
Valves, Relief ... 2-22
Volt Meter .. 4-8

W
Warning Horn (Optional) 4-10
Wear Pads .. 5-17
Table of Contents, Appendix

Hydraulic Schematics
- Perkins 104.22 Diesel with HP Limiter Valve .. E-2343110
- Deutz F4L1011 Diesel ... E-2341030
- European 1st use CEA00231 .. E-2370330

Electrical Schematics
- Perkins 104.22 Diesel with HP Limiter Valve .. D-2343100
- Deutz F4L1011 Diesel ... D-2341960
- Deutz F3L1011 and F4L1011 Diesel .. B-2367810
- Ford 2.3 Dual Fuel .. B-2364720
- Hatz Diesel with German Specifications ... D-2368830
- Perkins 104.22 Diesel ... B-2370390
- Wisconsin 65 HP Gas and Dual Fuel ... B-2370510
- Hatz 3L40C .. A-2369750
NOTE: THIS SCHEMATIC PERTAINS TO MACHINE MODELS

PM400F
PM400F
PM400F
ATH5
ATH60

NOTE: FOR RP-96
CHANGE STA TO 29
CHANGE 21 TO 22

ALL ITEMS ENCLOSED IN THE 5 DOTTED BOXES ARE MOUNTED ON THE MOUNTING PLATE

UNLESS OTHERWISE SPECIFIED ALL WIRES ARE 16 AWG.

REF: FORD 2.3 LITER DUAL FUEL

SIMON FUEL INC.
Wires nos. 51, 51A, 64, are 10 GA blue.
#21, #15 10 GA red.
All others are 14 GA.