Table of Contents

Introduction ... vi
Machine Specifications MP 40 viii
Machine Specifications MP 50 ix
Machine Specifications MP 60 x
Machine Specifications MP 60Z xi
Machine Specifications MP 70 xii
Machine Specifications MP 80 xiii
Machine Component Locator .. xv
Undercarriage Component Locator xvi
Superstructure Component Locator xvii
Boom Component Locator ... xviii
Platform Component Locator ... xix
Lubrication Chart .. xx

Section 1: Transportation and Emergency Procedures

- **Transport the Unit** .. 1-3
- **Towing Procedures** .. 1-3
- **Lifting Procedures** .. 1-3
- **Truck or Trailer Transport** .. 1-3
- **Unloading Procedures** ... 1-5
- **Emergency System and Procedures** 1-6
 - **Emergency Pumps** .. 1-6
 - **Unpowered Emergency Movement** 1-6
 - **Emergency Lowering** ... 1-7

Section 2: Hydraulic System

- **Hydraulic Fluid** .. 2-5
 - **Handling Precautions** .. 2-5
 - **Fluid Recommendations** ... 2-5
 - **Fluid Contamination Checks** 2-5
 - **System Flushing Procedure** 2-6
- **Hydraulic System Components** 2-9
 - **Hydraulic Pumps** .. 2-9
 - **Main Hydraulic Pump (Type 1)** 2-9
 - **Type One (1) Pump Adjustment** 2-10
 - **Main Hydraulic Pump (Type 2)** 2-11
 - **Type Two (2) Pump Adjustment** 2-13
 - **Emergency Pump** .. 2-13
 - **Emergency Pump Adjustment** 2-13
- **Drive valves** ... 2-14
 - **Drive Relief Valve** .. 2-14
 - **Drive Valve Assembly** .. 2-14
 - **Hi/Low Speed Drive Valve** 2-14
 - **Flow Divider Valve Assembly** 2-14
 - **Motion Control Valve Assembly** 2-14
 - **Drive Pilot Valve (Later Versions)** 2-15
- **Hydraulic Fluid Reservoir** 2-15
 - **Hydraulic Reservoir Maintenance** 2-15
 - **High Pressure Filter** ... 2-15
Table of Contents (Continued)

Section 2: Hydraulic System

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom Lift System</td>
<td>2-15</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-15</td>
</tr>
<tr>
<td>Platform</td>
<td>2-15</td>
</tr>
<tr>
<td>Ground</td>
<td>2-15</td>
</tr>
<tr>
<td>Lift Cylinder</td>
<td>2-16</td>
</tr>
<tr>
<td>Boom Telescope (Extend) System</td>
<td>2-16</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-17</td>
</tr>
<tr>
<td>Platform</td>
<td>2-17</td>
</tr>
<tr>
<td>Ground</td>
<td>2-17</td>
</tr>
<tr>
<td>Pressure Reducing Valve</td>
<td>2-17</td>
</tr>
<tr>
<td>Telescope (Extend) Cylinder</td>
<td>2-17</td>
</tr>
<tr>
<td>Mechanical Extend Function</td>
<td>2-18</td>
</tr>
<tr>
<td>Superstructure Swing System</td>
<td>2-19</td>
</tr>
<tr>
<td>Directional Control Valve</td>
<td>2-19</td>
</tr>
<tr>
<td>Platform</td>
<td>2-19</td>
</tr>
<tr>
<td>Ground</td>
<td>2-19</td>
</tr>
<tr>
<td>Swing Drive Motor/ Reducer Assembly</td>
<td>2-19</td>
</tr>
<tr>
<td>Worm Gear Type</td>
<td>2-19</td>
</tr>
<tr>
<td>Swing Gear and Pinion Shaft Adjustment</td>
<td>2-20</td>
</tr>
<tr>
<td>Planetary Gear Type with Intregal Brake</td>
<td>2-20</td>
</tr>
<tr>
<td>Swing Reducer/ Motor Assembly</td>
<td>2-20</td>
</tr>
<tr>
<td>Adjustment (MP60, MP 70, Later MP 80)</td>
<td>2-20</td>
</tr>
<tr>
<td>Worm Gear Type with Intregal Brake (MP80, Earlier)</td>
<td>2-21</td>
</tr>
<tr>
<td>Swing Drive/ Reducer Assembly Adjustment</td>
<td>2-21</td>
</tr>
<tr>
<td>Integral Brake Assembly</td>
<td>2-22</td>
</tr>
<tr>
<td>Swing System Maintenance</td>
<td>2-22</td>
</tr>
<tr>
<td>Platform Rotate System</td>
<td>2-23</td>
</tr>
<tr>
<td>Rotate Control Valve</td>
<td>2-23</td>
</tr>
<tr>
<td>Double Pilot Operated Check Valve</td>
<td>2-23</td>
</tr>
<tr>
<td>Rotary Actuator</td>
<td>2-23</td>
</tr>
<tr>
<td>Rotary Actuator Maintenance</td>
<td>2-23</td>
</tr>
<tr>
<td>Platform Rotator Manifold</td>
<td>2-23</td>
</tr>
<tr>
<td>Platform Level System</td>
<td>2-24</td>
</tr>
<tr>
<td>Level Control Valve</td>
<td>2-24</td>
</tr>
<tr>
<td>Double Pilot Operated Check Valve</td>
<td>2-24</td>
</tr>
<tr>
<td>Master Level Cylinder</td>
<td>2-25</td>
</tr>
<tr>
<td>Slave Level Cylinder</td>
<td>2-25</td>
</tr>
<tr>
<td>Relief Valves</td>
<td>2-25</td>
</tr>
<tr>
<td>Steer System</td>
<td>2-26</td>
</tr>
<tr>
<td>Drive/ Steer Manifold Assembly</td>
<td>2-26</td>
</tr>
<tr>
<td>Hydraulic Swivel</td>
<td>2-26</td>
</tr>
<tr>
<td>Steer Cylinder</td>
<td>2-26</td>
</tr>
<tr>
<td>Steer Disconnect Knob</td>
<td>2-26</td>
</tr>
<tr>
<td>Steer System Maintenance</td>
<td>2-26</td>
</tr>
<tr>
<td>Solenoid Valve Checks</td>
<td>2-27</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

Section 3: Drive System

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive System Components</td>
<td>3-3</td>
</tr>
<tr>
<td>Drive Motor and Brake Assembly</td>
<td>3-3</td>
</tr>
<tr>
<td>Hydraulic Manifold Valve Assembly</td>
<td>3-4</td>
</tr>
<tr>
<td>Drive Valve Assembly</td>
<td>3-4</td>
</tr>
<tr>
<td>Selector Valve</td>
<td>3-4</td>
</tr>
<tr>
<td>Motion Control Valve Assembly</td>
<td>3-4</td>
</tr>
<tr>
<td>Motion Control Valve</td>
<td>3-4</td>
</tr>
<tr>
<td>Flow Control Valve</td>
<td>3-5</td>
</tr>
<tr>
<td>Flow Divider Valve Assembly</td>
<td>3-5</td>
</tr>
<tr>
<td>Flow Divider/Combiner Valve</td>
<td>3-5</td>
</tr>
<tr>
<td>Gate (Globe) Valve</td>
<td>3-5</td>
</tr>
<tr>
<td>Drive Pilot Valve (Later Versions)</td>
<td>3-5</td>
</tr>
<tr>
<td>Drive Relief Valve</td>
<td>3-5</td>
</tr>
<tr>
<td>Toggle Switch on the Pendant Control</td>
<td>3-5</td>
</tr>
<tr>
<td>Drive Enable Valve</td>
<td>3-5</td>
</tr>
<tr>
<td>Platform Control Handle</td>
<td>3-5</td>
</tr>
</tbody>
</table>

Section 4: Electrical System

<table>
<thead>
<tr>
<th>System</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical System</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Maintenance (In Storage)</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Maintenance (In Use)</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Preventive Maintenance</td>
<td>4-4</td>
</tr>
<tr>
<td>Battery Replacement</td>
<td>4-4</td>
</tr>
<tr>
<td>Movement Alarm</td>
<td>4-4</td>
</tr>
<tr>
<td>Tilt Alarm</td>
<td>4-4</td>
</tr>
<tr>
<td>Tilt Alarm Test</td>
<td>4-4</td>
</tr>
<tr>
<td>Tilt Alarm Adjustment</td>
<td>4-5</td>
</tr>
<tr>
<td>Relays</td>
<td>4-5</td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td>4-5</td>
</tr>
<tr>
<td>Limit Switches</td>
<td>4-5</td>
</tr>
<tr>
<td>Emergency Pump</td>
<td>4-5</td>
</tr>
<tr>
<td>Emergency Stop Button</td>
<td>4-6</td>
</tr>
<tr>
<td>Pendant Switch Removal</td>
<td>4-6</td>
</tr>
<tr>
<td>Ground Control Cabinet Switch Removal</td>
<td>4-6</td>
</tr>
<tr>
<td>Platform Console Switch Removal</td>
<td>4-6</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

Section 5: Mechanical Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Components</td>
<td>5-3</td>
</tr>
<tr>
<td>Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Changing Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Wheels and Lug Nuts</td>
<td>5-3</td>
</tr>
<tr>
<td>Drive Hub Assembly</td>
<td>5-4</td>
</tr>
<tr>
<td>Steer Cylinder Pins</td>
<td>5-5</td>
</tr>
<tr>
<td>Rod End Cylinder Pin Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Base End Cylinder Pin Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Tie Rod Assembly</td>
<td>5-6</td>
</tr>
<tr>
<td>Tie Rod Assembly Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>Superstructure</td>
<td>5-7</td>
</tr>
<tr>
<td>Platform</td>
<td>5-8</td>
</tr>
<tr>
<td>Hoses and Cables</td>
<td>5-8</td>
</tr>
<tr>
<td>Miscellaneous Equipment</td>
<td>5-8</td>
</tr>
<tr>
<td>Boom</td>
<td>5-8</td>
</tr>
<tr>
<td>Boom Pivot Pin and Bushing Replacement</td>
<td>5-9</td>
</tr>
<tr>
<td>Wear Pads</td>
<td>5-9</td>
</tr>
<tr>
<td>Rear (Upper End) Wear Pad Replacement</td>
<td>5-10</td>
</tr>
<tr>
<td>Front (Lower End) Wear Pad Replacement</td>
<td>5-10</td>
</tr>
<tr>
<td>Boom Chain (For Three Piece Booms)</td>
<td>5-11</td>
</tr>
<tr>
<td>Boom Chain Adjustment</td>
<td>5-11</td>
</tr>
<tr>
<td>Boom Chain Replacement</td>
<td>5-12</td>
</tr>
<tr>
<td>Boom Lift Cylinder</td>
<td>5-18</td>
</tr>
<tr>
<td>Lift Cylinder Pivot Pin Replacement</td>
<td>5-18</td>
</tr>
<tr>
<td>Lift Cylinder Seal Replacement (On Machine)</td>
<td>5-18</td>
</tr>
<tr>
<td>Bench Replacement Of Lift Cylinder Seals</td>
<td>5-19</td>
</tr>
<tr>
<td>Holding Valve Inspection</td>
<td>5-20</td>
</tr>
<tr>
<td>Boom Telescope (Extend) Cylinder</td>
<td>5-21</td>
</tr>
<tr>
<td>Telescope (Extend) Boom Cylinder Pin Replacement</td>
<td>5-21</td>
</tr>
<tr>
<td>Telescope (Extend) Cylinder Removal</td>
<td>5-21</td>
</tr>
<tr>
<td>Telescope Cylinder Seal Replacement</td>
<td>5-22</td>
</tr>
<tr>
<td>Telescope Cylinder Installation</td>
<td>5-22</td>
</tr>
<tr>
<td>Holding Valve Inspection</td>
<td>5-22</td>
</tr>
<tr>
<td>Platform Level Cylinders</td>
<td>5-23</td>
</tr>
<tr>
<td>Platform Level Cylinder Pin Replacement</td>
<td>5-23</td>
</tr>
<tr>
<td>Level Cylinder Seal Replacement</td>
<td>5-23</td>
</tr>
<tr>
<td>Bleeding the Platform Leveling Circuit</td>
<td>5-24</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

Section 6: Maintenance Schedule

Maintenance Schedule .. 6-3
General Maintenance Tips .. 6-3
First Three Months of Operation 6-3
Routine Servicing ... 6-3
Daily Operational Checklist ... 6-6
Monthly Operational Checklist ... 6-9
Semi-Annual Operational Checklist 6-11

Section 7: Troubleshooting

General Troubleshooting Tips .. 7-3
Troubleshooting Chart ... 7-4

Addendum: Double Telescope Cylinder Boom (Special)

Index

Appendix
INTRODUCTION

This Service Manual is designed to provide you with the instructions needed to properly maintain the SIMON AERIALS INC. MP featuring Full Pressure Hydraulic controls. When used in conjunction with the Operator’s, Parts and Component Repair manuals (provided separately) this Service Manual will assist you in making necessary adjustments or repairs.

Simon Aerial Mobile Platforms are designed and built to provide many years of safe, dependable service. To obtain full benefits from your MP, always follow the proper operating and maintenance procedures. Only trained, authorized personnel should be allowed to operate or service this machine. Service personnel should read and study the Operators, Service, Parts and Component Repair Manuals in order to gain a thorough understanding of the unit prior to making any repairs.

To help you recognize important safety information, we have identified warnings and instructions that directly impact on safety with the following signals:

⚠️ DANGER

DANGER INDICATES AN IMMINENTLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, WILL RESULT IN DEATH OR SERIOUS INJURY.

⚠️ WARNING

WARNING INDICATES A POTIENTIALLY HAZARDOUS SITUATION WHICH, IF NOT AVOIDED, COULD RESULT IN DEATH OR SERIOUS INJURY.

⚠️ CAUTION

Caution indicates a potentially hazardous situation or alerts against unsafe practices. It is also used for "property damage only" hazards.
Service personnel and machine operators must understand and comply with all warnings and instructional decals on the body of the machine, and at the ground controls and platform control console.

⚠️ **DANGER**

MODIFICATIONS OF THIS MACHINE FROM THE ORIGINAL DESIGN AND SPECIFICATION WITHOUT WRITTEN PERMISSION FROM SIMON ARE STRICTLY FORBIDDEN. A MODIFICATION MAY COMPROMISE THE SAFETY OF THE MACHINE, SUBJECTING USERS TO SERIOUS INJURY OR DEATH. ANY SUCH MODIFICATION WILL VOID ANY REMAINING WARRANTY.

SIMON RESERVES THE RIGHT TO CHANGE, IMPROVE, MODIFY OR EXPAND FEATURES OF ITS EQUIPMENT AT ANY TIME. SPECIFICATIONS, MODELS OR EQUIPMENT ARE SUBJECT TO CHANGE WITHOUT NOTICE, AND WITHOUT INCURRING ANY OBLIGATIONS TO CHANGE, IMPROVE, MODIFY OR EXPAND FEATURES OF PREVIOUSLY DELIVERED EQUIPMENT.

All Simon manuals are periodically updated to reflect changes that occur in the equipment. Please contact the factory with any questions you may have regarding your machine, or the availability of more recent manuals.
Machine Specifications MP 40

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Height</td>
<td>46 ft/14.02 m</td>
</tr>
<tr>
<td>Platform Height</td>
<td>40 ft/12.09 m</td>
</tr>
<tr>
<td>Horizontal Reach (Boom Angle 0°)</td>
<td>27 ft 10 in./8.48 m</td>
</tr>
<tr>
<td>Platform Capacity (unrestricted)</td>
<td>500 lbs./227 Kg</td>
</tr>
<tr>
<td>Platform Size</td>
<td>36 in. x 72 in. x 42 in./ .91 m x 1.83 m x 1.07 m</td>
</tr>
<tr>
<td>Stowed Length</td>
<td>22 ft 3 in./6.76 m</td>
</tr>
<tr>
<td>Stowed Height</td>
<td>7 ft 5 in./2.26 m</td>
</tr>
<tr>
<td>Machine Width</td>
<td>7 ft 6 in./2.29 m</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>8 ft/2.44 m</td>
</tr>
<tr>
<td>Outside Turning Radius</td>
<td>16 ft/4.88 m</td>
</tr>
<tr>
<td>Maximum Travel Speed:</td>
<td></td>
</tr>
<tr>
<td>Boom Stowed (see Note 1)</td>
<td>3 MPH/4.8 KPH</td>
</tr>
<tr>
<td>Boom Extended</td>
<td>0.5 MPH/0.8 KPH</td>
</tr>
<tr>
<td>Ground Clearance</td>
<td>8 in./20.3 cm</td>
</tr>
<tr>
<td>Gross Weight (approx.) (Note 1)</td>
<td>11,700 lbs./5,307 Kg</td>
</tr>
<tr>
<td>Gradeability (on Hard Surface) (see Note 1)</td>
<td>15°/27%</td>
</tr>
<tr>
<td>Platform Rotation</td>
<td>180°</td>
</tr>
<tr>
<td>Superstructure Rotation</td>
<td>360° continuous, either direction</td>
</tr>
<tr>
<td>Tire Size</td>
<td>12 x 16.5 (9 Ply)</td>
</tr>
<tr>
<td>Tire Pressure (Disregard for foam filled tires)</td>
<td>65 psi/4.48 Bar/4.57 Kg/cm²</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque (Drive Axle)</td>
<td>65 ft lbs./ 88 Nm/ 9.0 Kg-m</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque (Steer Axle)</td>
<td>90 ft lbs./ 122 Nm/ 12.4 Kg-m</td>
</tr>
<tr>
<td>Swing Bearing Bolt Torque</td>
<td>170 ft lbs./230 Nm/23.5 Kg-m</td>
</tr>
<tr>
<td>Drive Hub Bolt Torque</td>
<td>80 ft lbs./108 Nm/11.0 Kg-m</td>
</tr>
<tr>
<td>Maximum Hydraulic Pressure</td>
<td>2500 psi/172 Bar/175 Kg/cm²</td>
</tr>
<tr>
<td>Hydraulic Tank Capacity</td>
<td>35 gal./132 Liters</td>
</tr>
<tr>
<td>Fuel Tank Capacity</td>
<td>35 gal./132 Liters</td>
</tr>
<tr>
<td>Electrical System</td>
<td>One 12 Volt DC Battery</td>
</tr>
</tbody>
</table>

Note 1: Weight and performance shown represent typical units, and should be used as a general guideline only. Many variables between machines can lead to significant differences in these factors. Accurate figures, when necessary for a particular application, can best be determined by testing of the specific unit.
MACHINE SPECIFICATIONS MP 50

Working Height .. 56 Ft / 17.07 M
Platform Height .. 50 Ft / 15.24 M
Horizontal Reach (Boom Angle 0°) 38 Ft 7 In./ 11.76 M
Platform Capacity (Unrestricted) 500 Lbs./ 225 Kg
Platform Size .. 36 In. x 72 In. x 42 In./
 .91 M x 1.83 M x 1.07 M
Stowed Length ... 28 Ft 2 In./ 8.59 M
Stowed Height .. 7 Ft 11 In./ 2.41 M
Machine Width ... 8 Ft 0 In./ 2.44 M
Wheelbase .. 8 Ft 0 In./ 2.44 M
Outside Turning Radius 16 Ft 0 In./ 4.88 M
Maximum Travel Speed:
 Boom Stowed (Note 1) 3 MPH/ 4.8 KPH
 Boom Extended .. 0.5 MPH/ 0.8 KPH
Ground Clearance .. 8 In./ 20.3 cm
Gross Weight (Approx.) (Note 1) 15,800 Lbs./ 7,167 Kg
Gradeability (On Hard Surface) (Note 1) 13° / 23%
Platform Rotation .. 180°
Superstructure Rotation 360° continuous, either direction
Tire Size .. 12 x 16.5 (9 Ply)
Tire Pressure (Disregard for foam filled tires) 65 PSI/ 4.48 Bar/ 4.57 Kg-cm²
Wheel Lug Nut Torque (Drive Axle) 65 Ft Lbs./ 88 Nm/ 9.0 Kg-m
Wheel Lug Nut Torque (Steer Axle) 90 Ft Lbs./ 122 Nm/ 12.4 Kg-m
Swing Bearing Bolt Torque 170 Ft Lbs./ 230 Nm/ 23.5 Kg-m
Drive Hub Bolt Torque 80 Ft Lbs./ 108 Nm/ 11.0 Kg-m
Maximum Hydraulic Pressure 2500 PSI/ 172 Bar/ 175 Kg-cm²
Hydraulic Tank Capacity 35 Gal./ 132 Liters
Fuel Tank Capacity ... 35 Gal./ 132 Liters
Electrical System .. One 12 Volt DC Battery

Engine Availability:
Standard . . . Wisconsin W41770, 35 HP (26.1 Kw), Air Cooled, Gas
Optional . . . Wisconsin W41770, 35 HP (26.1 Kw), Air Cooled, Dual Fuel
 Ford VSG 413, 42 HP (31.3 Kw), Liquid Cooled, Gas or Dual Fuel
 Deutz F2L 912, 32 HP (23.9 Kw), Air Cooled, Diesel
 Deutz F3L 1011, 42 HP (31.3 Kw), Air Cooled, Diesel
 Isuzu 3KR1, 35 HP (26.1 Kw), Liquid Cooled, Diesel
 Perkins 104.19, 43 HP (32.1 Kw), Liquid Cooled, Diesel

Note 1: Weight and performance shown represent typical units, and should be used as a general guideline only. Many variables between machines can lead to significant differences in these factors. Accurate figures, when necessary for a particular application, can best be determined by testing of the specific unit.
MACHINE SPECIFICATIONS MP 60

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Height</td>
<td>66 Ft/ 20.12 M</td>
</tr>
<tr>
<td>Platform Height</td>
<td>60 Ft/ 18.29 M</td>
</tr>
<tr>
<td>Horizontal Reach (Boom Angle 0°)</td>
<td>48 Ft 7 In./14.80 M</td>
</tr>
<tr>
<td>Platform Capacity (unrestricted)</td>
<td>500 Lbs./ 227 Kg</td>
</tr>
<tr>
<td>Platform Size</td>
<td>36 In. x 72 In. x 42 In./ .91M x 1.83 M x 1.07 M</td>
</tr>
<tr>
<td>Stowed Length</td>
<td>25 Ft 8 In./ 7.82 M</td>
</tr>
<tr>
<td>Stowed Height</td>
<td>8 Ft 7 In./ 2.62 M</td>
</tr>
<tr>
<td>Machine Width</td>
<td>8 Ft/ 2.44 M</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>8 Ft/ 2.44 M</td>
</tr>
<tr>
<td>Outside Turning Radius</td>
<td>16 Ft 10 In./ 5.13 M</td>
</tr>
<tr>
<td>Maximum Travel Speed:</td>
<td></td>
</tr>
<tr>
<td>Boom Stowed (see Note 1)</td>
<td>2.5 MPH/ 4.0 KPH</td>
</tr>
<tr>
<td>Boom Extended</td>
<td>0.5 MPH/ 0.8 KPH</td>
</tr>
<tr>
<td>Ground Clearance</td>
<td>10.7 In./ 27.2 cm</td>
</tr>
<tr>
<td>Gross Weight (approx.) (Note 1)</td>
<td>20,500 Lbs./ 9,299 Kg</td>
</tr>
<tr>
<td>Gradeability (on Hard Surface) (see Note 1)</td>
<td>15°/ 27%</td>
</tr>
<tr>
<td>Platform Rotation</td>
<td>180°</td>
</tr>
<tr>
<td>Superstructure Rotation</td>
<td>360° continuous, either direction</td>
</tr>
<tr>
<td>Tire Size</td>
<td>15 x 19.5 (14 Ply)</td>
</tr>
<tr>
<td>Tire Pressure (Disregard for foam filled tires)</td>
<td>105 PSI/ 7.24 Bar/ 7.38 Kg-cm²</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque (Drive Axle)</td>
<td>220 Ft Lbs./ 298 Nm/ 30.4 Kg-m</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque (Steer Axle)</td>
<td>220 Ft Lbs./ 298 Nm/ 30.4 Kg-m</td>
</tr>
<tr>
<td>Swing Bearing Bolt Torque</td>
<td>320 Ft Lbs./ 434 Nm/ 4422 Kg-m</td>
</tr>
<tr>
<td>Drive Hub Bolt Torque</td>
<td>170 Ft Lbs./ 231 Nm/23.49 Kg-m</td>
</tr>
<tr>
<td>Maximum Hydraulic Pressure</td>
<td>2500 PSI/ 172 Bar/ 175 Kg-cm²</td>
</tr>
<tr>
<td>Hydraulic Tank Capacity</td>
<td>35 Gal./ 132 Liters</td>
</tr>
<tr>
<td>Fuel Tank Capacity</td>
<td>35 Gal./ 132 Liters</td>
</tr>
<tr>
<td>Electrical System</td>
<td>One 12 Volt DC Battery</td>
</tr>
<tr>
<td>Engine Availability:</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Wisconsin W41770, 35 HP (26.1 Kw), Air Cooled, Gas</td>
</tr>
<tr>
<td>Optional</td>
<td>Wisconsin W41770, 35 HP (26.1 Kw), Air Cooled, Dual Fuel</td>
</tr>
<tr>
<td></td>
<td>Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Gas or Dual Fuel (Std. 4WD)</td>
</tr>
<tr>
<td></td>
<td>Ford LSG 423, 63 HP (47.0 Kw), Liquid Cooled, Gas or Dual Fuel</td>
</tr>
<tr>
<td></td>
<td>Deutz F3L912, 55 HP (41.0 Kw), Air Cooled, Diesel</td>
</tr>
<tr>
<td></td>
<td>Deutz F3L1011, 42 HP (31.3 Kw), Air Cooled, Diesel</td>
</tr>
<tr>
<td></td>
<td>Deutz F4L1011, 56 HP (41.7 Kw), Air Cooled, Diesel</td>
</tr>
<tr>
<td></td>
<td>Isuzu C-240, 56 HP (41.7 Kw), Liquid Cooled, Diesel</td>
</tr>
<tr>
<td></td>
<td>Perkins 104.19, 43 HP (32.1 Kw), Liquid Cooled, Diesel</td>
</tr>
</tbody>
</table>

Note 1: Weight and performance shown represent typical units, and should be used as a general guideline only. Many variables between machines can lead to significant differences in these factors. Accurate figures, when necessary for a particular application, can best be determined by testing of the specific unit.
MACHINE SPECIFICATIONS MP 60Z

Working Height .. 66 Ft/ 20.12 M
Platform Height .. 60 Ft/ 18.29 M
Horizontal Reach (Boom Angle 0°) 52 Ft 2 In./ 15.90 M
Platform Capacity (Unrestricted) 500 Lbs./ 227 Kg
Platform Size ..

Stowed Length .. 46 In. x 36 In. x 72 In./
Stowed Height .. 1.17 M x .91 M x 1.83 M
Machine Width .. 28 Ft 4in./ 8.64 M
Wheelbase ...

Outside Turning Radius ...
Maximum Travel Speed:
 Boom Stowed (Note 1) ..
 Boom Extended ..
Ground Clearance ...
Gross Weight (Approx.) (Note 1) 8 Ft 0 In./ 2.44 M
Gradeability (Note 1) ..
Platform Rotation ..

Superstructure Rotation 8 Ft 0 In./ 2.44 M
Tire Size .. 16 Ft 10 In./ 5.13 M

Tire Pressure (Disregard for foam filled tires)
 2.5 MPH/ 4.0 KPH
 0.5 MPH/ 0.8 KPH
Ground Clearance ...
11.5 In./ 292 mm
Gross Weight (Approx.) (Note 1)
30,330 Lbs./ 13,758 Kg
Gradeability (Note 1) ..
15°/ 27% (On Hard Surface)

Platform Capacity (Unrestricted)
180°
Outside Turning Radius ..
360° continuous, either direction

Wheel Lug Nut Torque (Drive Axle) 15 x 19.5 (14 Ply)
Wheel Lug Nut Torque (Steer Axle)
Wheel Lug Nut Torque (Steer Axle)
Swing Bearing Bolt Torque
Drive Hub Bolt Torque ..

Maximum Hydraulic Pressure
Hydraulic Tank Capacity

Fuel Tank Capacity ..

Electrical System ... 35 Gal./ 132 Liters

Engine Availability:
 Standard ... Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Gas or Dual Fuel (Std. 4WD)
 Optional ... Ford LSG 423, 63 HP (47.0 Kw), Liquid Cooled, Gas or Dual Fuel
 Deutz F3L 912, 55 HP (41 Kw), Air Cooled, Diesel
 Deutz F4L 1011, 56 HP (41.7 Kw), Air Cooled, Diesel

NOTE 1: Weight and performance shown represent typical units, and should be used as a general guideline only. Many variables between machines can lead to significant differences in these factors. Accurate figures, when necessary for a particular application, can best be determined by testing of the specific unit.
MACHINE SPECIFICATIONS MP 70

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Height</td>
<td>76 ft / 23.16 m</td>
</tr>
<tr>
<td>Platform Height</td>
<td>70 ft / 21.34 m</td>
</tr>
<tr>
<td>Horizontal Reach (Boom Angle 0°)</td>
<td>60 ft 0 in. / 18.29 m</td>
</tr>
<tr>
<td>Platform Capacity (Unrestricted)</td>
<td>500 lbs / 227 Kg</td>
</tr>
<tr>
<td>Platform Size</td>
<td>36 in. x 72 in. x 42 in. / 0.91 m x 1.83 m x 1.07 m</td>
</tr>
<tr>
<td>Slowed Length</td>
<td>30 ft 0 in. / 9.14 m</td>
</tr>
<tr>
<td>Slowed Height</td>
<td>8 ft 10 in. / 2.69 m</td>
</tr>
<tr>
<td>Machine Width</td>
<td>8 ft 0 in. / 2.44 m</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>8 ft 0 in. / 2.44 m</td>
</tr>
<tr>
<td>Outside Turning Radius</td>
<td>17 ft 3 in. / 5.26 m</td>
</tr>
<tr>
<td>Maximum Travel Speed:</td>
<td></td>
</tr>
<tr>
<td>Boom Slowed (Note 1)</td>
<td>2.5 MPH / 4.0 KPH</td>
</tr>
<tr>
<td>Boom Extended</td>
<td>0.5 MPH / 0.8 KPH</td>
</tr>
<tr>
<td>Ground Clearance</td>
<td>11.5 in. / 29.2 cm</td>
</tr>
<tr>
<td>Gross Weight (Approx.) (Note 1)</td>
<td>35,500 lbs / 16,102 Kg</td>
</tr>
<tr>
<td>Gradeability (Note 1)</td>
<td>12°/ 21% (On Hard Surface)</td>
</tr>
<tr>
<td>Platform Rotation</td>
<td>180°</td>
</tr>
<tr>
<td>Superstructure Rotation</td>
<td>360° continuous, either direction</td>
</tr>
<tr>
<td>Tire Size</td>
<td>15 x 19.5 (14 Ply)</td>
</tr>
<tr>
<td>Tire Pressure (Disregard for foam filled tires)</td>
<td>105 PSI / 7.24 Bar / 7.38 Kg·cm²</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque (Drive Axle)</td>
<td>220 ft lbs / 298 Nm / 30.4 Kg·m</td>
</tr>
<tr>
<td>Wheel Lug Nut Torque (Steer Axle)</td>
<td>220 ft lbs / 298 Nm / 30.4 Kg·m</td>
</tr>
<tr>
<td>Swing Bearing Bolt Torque</td>
<td>320 ft lbs / 434 Nm / 44.22 Kg·m</td>
</tr>
<tr>
<td>Drive Hub Bolt Torque</td>
<td>170 ft lbs / 231 Nm / 23.49 Kg·m</td>
</tr>
<tr>
<td>Maximum Hydraulic Pressure</td>
<td>3000 PSI / 207 Bar / 211 Kg·cm²</td>
</tr>
<tr>
<td>Hydraulic Tank Capacity</td>
<td>35 Gal. / 132 Liters</td>
</tr>
<tr>
<td>Fuel Tank Capacity</td>
<td>35 Gal. / 132 Liters</td>
</tr>
<tr>
<td>Electrical System</td>
<td>One 12 Volt DC Battery</td>
</tr>
</tbody>
</table>

Engine Availability:

- **Standard**... Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Gas
- **Optional**... Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Dual Fuel
- Ford LSG 423, 63 HP (47.0 Kw), Liquid Cooled, Gas or Dual Fuel
- Deutz F3L 912, 55 HP (41 Kw), Air Cooled, Diesel
- Deutz F4L 912, 71 HP (53 Kw), Air Cooled, Diesel
- Deutz F4L 1011, 56 HP (41.7 Kw), Air Cooled, Diesel
- Isuzu C-240, 56 HP (41.7 Kw) Liquid Cooled, Diesel

Note 1: Weight and performance shown represent typical units, and should be used as a general guideline only. Many variables between machines can lead to significant differences in these factors. Accurate figures, when necessary for a particular application, can best be determined by testing of the specific unit.
MACHINE SPECIFICATIONS MP 80

Working Height ... 86 Ft/ 26.21 M
Platform Height ... 80 Ft/ 24.38 M
Horizontal Reach (Boom Angle 0°) 69 Ft 11 In./ 21.31 M
Platform Capacity (unrestricted) ... 500 Lbs./ 227 Kg
Platform Size .. 36 In. x 72 In. x 42 In./ .91 M x 1.83 M x 1.07 M
Stowed Length .. 34 Ft 8 In./ 10.56 M
Stowed Height .. 8 Ft 10 In./ 2.69 M
Machine Width ... 8 Ft 4 In./ 2.54 M
Wheelbase ... 8 Ft/ 2.44 M
Outside Turning Radius .. 17 Ft 3 In./ 5.26 M
Maximum Travel Speed:
 Boom Stowed (see Note 1) .. 2.7 MPH/ 4.3 KPH
 Boom Extended .. 0.5 MPH/ 0.8 KPH
Ground Clearance ... 11.5 In./ 29.2 cm
Gross Weight (approx.) (Note 1) .. 43,000 Lbs./ 19,504 Kg
Gradeability (on Hard Surface) (see Note 1) 12°/ 21%
Platform Rotation .. 180°
Superstructure Rotation .. 360° continuous, either direction
Tire Size .. 15 x 19.5 (14 Ply)
Tire Pressure (Disregard for foam filled tires) 105 PSI/ 7.24 Bar/ 7.38 Kg-cm²
Wheel Lug Nut Torque (Drive Axle) 220 Ft Lbs./ 298 Nm/ 30.4 Kg-m
Wheel Lug Nut Torque (Steer Axle) 220 Ft Lbs./ 298 Nm/ 30.4 Kg-m
Swing Bearing Bolt Torque ... 320 Ft Lbs./ 434 Nm/ 4422 Kg-m
Drive Hub Bolt Torque .. 170 Ft Lbs./ 231 Nm/ 23.49 Kg-m
Maximum Hydraulic Pressure ... 3000 PSI/ 207 Bar/ 211 Kg-cm²
Hydraulic Tank Capacity ... 35 Gal./ 132 Liters
Fuel Tank Capacity ... 35 Gal./ 132 Liters
Electrical System .. One 12 Volt DC Battery

Engine Availability:
 Standard . . . Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Gas
 Optional . . . Wisconsin V-465, 65 HP (48.5 Kw), Air Cooled, Dual Fuel
 Ford LSG 423, 63 HP (47.0 Kw), Liquid Cooled, Gas or Dual Fuel
 Deutz F3L912, 55 HP (41.0 Kw), Air Cooled, Diesel
 Deutz F4L912, 71 HP (53.0 Kw), Air Cooled, Diesel
 Deutz F4L1011, 56 HP (41.7 Kw), Air Cooled, Diesel

Note 1: Weight and performance shown represent typical units, and should be used as a general guideline only. Many variables between machines can lead to significant differences in these factors. Accurate figures, when necessary for a particular application, can best be determined by testing of the specific unit.
<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>SPECIFICATION AND QUANTITY</th>
<th>FREQUENCY OF LUBRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Hydraulic reservoir</td>
<td>Mobil DTE-13M to "Full" mark with all cylinders retracted.</td>
<td>Check each shift. Analyze every six (6) months or 500 hours.††.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change yearly or every 1,000 hours.††.</td>
</tr>
<tr>
<td>2.</td>
<td>Hydraulic filter(s)</td>
<td>Filter element(s).</td>
<td>Change every six (6) months or 500 hours.††.</td>
</tr>
<tr>
<td>3.</td>
<td>Swing bearing (standard open style)</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.††.</td>
</tr>
<tr>
<td>4.</td>
<td>Swing bearing gear teeth (standard</td>
<td>Dry moly lube spray.</td>
<td>Every six (6) months or 500 hours.†</td>
</tr>
<tr>
<td></td>
<td>open style)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>"Oil bath" style swing bearing</td>
<td>SAE 80 W 90</td>
<td>Check monthly or every 100 hours.†.</td>
</tr>
<tr>
<td></td>
<td>(optional)</td>
<td></td>
<td>Change if contaminated.</td>
</tr>
<tr>
<td>6.</td>
<td>Swing drive gear box</td>
<td>Fill to plug. SAE 140 EP or N.L.G.I. #00 EP oil.</td>
<td>Check bimonthly or every 200 hours.††.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change every two (2) years or 2,000 hours.†.</td>
</tr>
<tr>
<td>7.</td>
<td>Boom pivot pins and Cylinder pins</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.††.</td>
</tr>
<tr>
<td>8.</td>
<td>Wheel bearings</td>
<td>Lithium N.L.G.I. #2 EP. Clean and repack.</td>
<td>Change yearly or every 1,000 hours.†.</td>
</tr>
<tr>
<td>9.</td>
<td>Steering spindles</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.††.</td>
</tr>
<tr>
<td>10.</td>
<td>Steering linkage</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.††.</td>
</tr>
<tr>
<td>11.</td>
<td>Steering tie rod ends</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.††.</td>
</tr>
<tr>
<td>12.</td>
<td>Drive wheel power hubs</td>
<td>SAE 80 W 90, SAE 90 or SAE 85-140, half full.</td>
<td>After first 50 hours, then yearly or every 1,000 hours.††.</td>
</tr>
<tr>
<td>13.</td>
<td>Boom wear pads</td>
<td>Silicone spray.</td>
<td>Monthly or every 100 hours.††.</td>
</tr>
</tbody>
</table>
LUBRICATION CHART

<table>
<thead>
<tr>
<th>NO.</th>
<th>ITEM</th>
<th>SPECIFICATION AND QUANTITY</th>
<th>FREQUENCY OF LUBRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Platform control handle pivot pins</td>
<td>WD 40 Spray or equivalent penetrating oil.</td>
<td>Monthly or every 100 hours.*</td>
</tr>
<tr>
<td>15</td>
<td>Platform rotate mechanism</td>
<td>Hydraulic fluid.</td>
<td>Yearly.</td>
</tr>
<tr>
<td>16</td>
<td>Boom chain</td>
<td>WD 40 Spray or equivalent penetrating oil.</td>
<td>Monthly or every 100 hours.*</td>
</tr>
<tr>
<td>17</td>
<td>Boom chain sheave sprockets</td>
<td>Lithium N.L.G.I. #2 EP. Purge old grease.</td>
<td>Monthly or every 100 hours.*</td>
</tr>
</tbody>
</table>

* Whichever occurs first.
† Different requirements for severe duty applications. See checklists.
SECTION 1:
TRANSPORTATION
AND
EMERGENCY PROCEDURES
Table of Contents, Section 1

Transport the Unit ... 1-3
Towing Procedures ... 1-3
Lifting Procedures ... 1-3
Truck or Trailer Transport .. 1-3
Unloading Procedures .. 1-5
Emergency System and Procedures 1-6
 Emergency Pump ... 1-6
 Unpowered Emergency Movement 1-6
 Emergency Lowering .. 1-7
TRANSPORT THE UNIT

TOWING PROCEDURES

WITHOUT OPTIONAL TOWING PACKAGE:

- If optional towing package is not installed, refer to "UNPOWERED EMERGENCY MOVEMENT" in this section.

WITH OPTIONAL TOWING PACKAGE:

- Securely attach the unit to a tow vehicle with the tow bar provided.
- Disengage torque hubs:

![WARNING]

WHENEVER DISENGAGING THE DRIVE TORQUE HUBS OR BEFORE DISCONNECTION FROM TOWING VEHICLE, ENSURE THAT THE UNIT CANNOT ROLL.

Type 1: Remove the plate in the center of the torque hub. Turn the plate so that the boss faces in. Reinstall the cap.

Type 2: Remove the large hex cap in the center of the torque hub. Push in and turn screw slot in the center of the torque hub to line up with the "TOW" mark on the hub. Reinstall the cap.

- Pull steer wander control valve, located near the ground electrical panel, to allow steering wheels to track behind tow vehicle.
- The tow vehicle must have sufficient braking capability in order to safely stop itself as well as the towed unit. Tow speed shall not exceed 3 mph (4.8 KPH).

LIFTING PROCEDURES

Use the upper "lifting eyes" on the tie down lugs when lifting the unit. Tie down lugs are located on the four corners of the undercarriage.

TRUCK OR TRAILER TRANSPORT

![WARNING]

ALWAYS ATTACH THE UNIT TO A WINCH WHEN LOADING OR UNLOADING FROM A TRUCK OR TRAILER. CONNECT WINCH CABLE TO THE TIE DOWN LUGS ON THE UNDERCARRIAGE.

UNASSISTED LOADING OR UNLOADING OF ANY MOBILE PLATFORM IS NOT RECOMMENDED.

1. Turn ground/platform key switch to "PLATFORM".
2. Enter the platform and start the engine using the platform controls. If unit has an Engine RPM Selector Switch, select the "HI" engine speed.
3. Raise boom to allow greater ground clearance so that the platform will clear any obstacle as the machine goes up the loading ramp.
4. Using a winch, carefully maneuver unit onto the truck or trailer. Remember, selecting drive mode will release brakes.
5. Lock superstructure to undercarriage by installing the lock pin provided.
6. Ensure that the boom is fully retracted and that the platform will not contact any other item, including the bed of the truck or trailer. (Only the boom tip should rest on truck or trailer bed.)
CAUTION

To avoid damaging the unit, the platform MUST NOT be tied to the trailer bed in any way.

7. The negative battery cables should be disconnected for long distance transport. It is recommended that the fuel and hydraulic tank valves be closed as well.

8. Tie down locations are located on all four corners of the undercarriage. Use four (4) 1/2 inch, "Grade 7" chains from each of the tie down lugs, and run the chains as illustrated on the facing page.

Rachet type load binders are recommended. If using lever type load binders, wire or strap them shut, or wrap chains around them to prevent opening.

9. Strap the boom down as illustrated on the facing page.
UNLOADING PROCEDURES

WARNING
TO AVOID A SERIOUS PERSONAL INJURY OR DEATH, ENSURE THAT THE MACHINE IS IN "LOW" DRIVE SPEED WHILE UNLOADING FROM A TRUCK OR TRAILER.

- Inspect the outside of the unit for damage (including the underside). Inspect all hoses, boom sections and cables for chafing or road damage. Confirm that all wheel lug nuts and swing bearing bolts are tight.

- Remove the pin that locks the superstructure to the undercarriage near the swing bearing. Slow the lock pin in the location provided near by.

- Unlock and open both side compartments. Inspect all fuel, electrical and hydraulic connections for damage and security.

- Connect battery cables to batteries if required. Check electrolyte level.

- Open the fuel tank valve.

- Check engine oil level, and add as required per engine manufacturer's recommendations.

- Check fluid level at the sight gauge on the hydraulic tank, and add fluid as required (see Lubrication Chart). Check that shutoff valves on the hydraulic tank are open.

- Close side compartment covers.

CAUTION
Always attach the unit to a winch when loading or unloading from a truck or trailer. We do not recommend unassisted loading or unloading of any mobile platform.

- Attach the unit to a winch for the unloading procedure.

CAUTION
Read and understand all safety, control and operating information found on the machine and in this manual before operating the unit.

- Start engine, using the ground controls. After a brief warmup period, select the "HIGH" engine speed. Activate the ground controls, and check that the hydraulic pressure is as stated on the Data Plate. Select the "LOW" engine speed and allow the engine to slow to idle speed. Turn off engine.

NOTE: Refer to Startup Procedures and Operator Controls Descriptions in the Operator’s Manual

- Remove all machine tie downs. Remove wheel chocks, if used. Switch the Ground/Platform toggle to "PLATFORM CONTROLS".

- Enter the platform, and restart the engine using the platform controls. Select "OPERATING engine speed, and test all platform functions.

- Raise the boom so that the platform will clear any obstacles as the machine is driven down the loading ramp. It may be necessary to swing the superstructure to the side to allow greater ground clearance.

- Carefully drive the unit off the truck or trailer.

The brakes are automatically released for driving, and will automatically apply when the unit stops.

- Before placing the unit into service, all operators must read and understand the contents of this Operator’s Manual.
EMERGENCY SYSTEM AND PROCEDURES

⚠️ DANGER ⚠️

IF THE UNIT FAILS WHILE THE OPERATOR'S PLATFORM IS RAISED OR EXTENDED, DO NOT ATTEMPT TO CLimb DOWN THE BOOM ASSEMBLY. SERIOUS INJURY MAY RESULT.

EMERGENCY ELECTRICAL PUMP

This unit has one emergency pump which can be operated from the operator's platform or ground control station to briefly operate the machine when the unit has lost engine power.

- Press and hold the "EMERGENCY" push button on the remote control pendant,

or

- Press and hold the "EMERGENCY PUMP" push button on the platform control console.

- Select the proper function as desired to fit the situation.

To prevent the battery from completely discharging and the emergency pump from overheating, release the emergency pump button to allow a 30 second rest period after every 30 seconds of operation.

Once the unit has been safely positioned, correct the cause of the failure before returning the unit to service.

⚠️ DANGER ⚠️

UNPOWERED EMERGENCY MOVEMENT

- Every attempt should be made to restore primary power to the unit before using this procedure.

⚠️ DANGER ⚠️

THIS PROCEDURE REQUIRES releasing the vehicle torque hubs, which results in there being no means to stop the unit's travel. Simon recommends using this procedure only in cases of emergency and only for a short distance.

BE ON GUARD AGAINST UNIT RUNAWAY ON SLOPING SURFACES. MOVEMENT SPEED SHALL NOT EXCEED 1 M.P.H. (1.6 K.P.H.).

- Secure the unit with chains or ropes to the tie down lugs located at the front and rear of the undercarriage. The chains or ropes must be of sufficient capacity to pull the unit.

- Block wheels.

- Close brake circuit needle valve located at the center rear of the undercarriage.

- Disengage torque hubs:

⚠️ WARNING ⚠️

WHENEVER DISENGAGING THE DRIVE TORQUE HUBS OR BEFORE DISCONNECTION FROM TOWING VEHICLE, ENSURE THAT THE UNIT CANNOT ROLL.
Type 1: Remove the plate in the center of the torque hub. Turn the plate so that the boss faces in. Reinstall the cap.

Type 2: Remove the large hex cap in the center of the torque hub. Push it in and turn screw slot in the center of the torque hub until it lines up with the "TOW" mark on the hub. Reinstall the cap.

- Disconnect steer cylinder.
- Unblock the wheels. The unit is now ready to be moved.
- After primary power has been restored to the vehicle, engage the torque hubs and connect steer cylinder.
- The machine is now ready for normal operation.

EMERGENCY LOWERING

It is not possible for us to foresee every emergency situation that could arise during operation of this machine. Information on the following pages describes three typical emergency situations, and lists appropriate actions that can be taken.

When faced with an emergency, above all please remember:

- Stay calm.
- Think through the situation before operating the machine.
- Get help if necessary.

SITUATION: Platform elevated, operator not incapacitated, but unit will not respond to platform controls.

POSSIBLE CONDITION:
- One or more functions not operating correctly.
- Unit movement from unselected control lever.
- Unit function will not stop unless power is switched off.

CORRECTIVE ACTION

1. Remove foot from foot pedal.
2. Push the red "Emergency Stop" Button.
3. Evaluate the nature of the failure. Return to the ground, using the emergency pumps and lowering procedure (see "Emergency Pumps").
4. If unable to return to the ground using the platform controls and the emergency pumps, contact an experienced operator to lower the machine using the emergency pumps from the pendant controls (see "Emergency Pump").

DANGER

DO NOT TRY TO CLIMB DOWN THE BOOM.

HAVE AN EXPERIENCED OPERATOR USE THE EMERGENCY PUMPS TO SAFELY LOWER THE PLATFORM. REPORT THE INCIDENT TO YOUR SUPERVISOR IMMEDIATELY.

5. Report the incident to your supervisor immediately.
SITUATION: Unit elevated, with operator incapacitated at platform controls.

⚠️ DANGER
DO NOT TOUCH UNIT !!!

DETERMINE THE CAUSE OF THE PROBLEM BEFORE YOU TOUCH THE MACHINE.

CORRECTIVE ACTION

1. Have someone summon first aid or rescue squad.

2. Attempt to talk to operator before taking any rescue measures.

3. Check to see if the operator is in a pinned position, or would be endangered if platform is moved, before attempting emergency lowering procedure.

4. After establishing that the machine is not in contact with live power lines, lower the platform using the emergency lowering procedure (see "Emergency Pump").

5. Render first aid to the operator.

6. Report the incident to your supervisor immediately.

IMPORTANT: Any incident involving personal injury must be immediately reported to the local Simon Aerials Distributorship as well as to Simon Aerials Inc.

SITUATION: Platform in contact with live power lines and operator incapacitated.

⚠️ DANGER
DO NOT TOUCH UNIT !!!

CORRECTIVE ACTION

1. Contact authorized personnel to disconnect power supply touching unit.

2. Have someone summon first aid or rescue squad.

3. If operator is unconscious, check to see if he is in a pinned position, or would be endangered if platform is moved.

4. AFTER POWER IS CUT, use the emergency lowering procedure to bring platform with operator to a safe location to render first aid (see "Emergency Pump").

5. Report the incident to your supervisor immediately.

IMPORTANT: Any incident involving personal injury must be immediately reported to the local Simon Aerials Distributorship as well as to Simon Aerials Inc.
SECTION 2:
HYDRAULIC SYSTEM
Table of Contents, Section 2:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Fluid</td>
<td>2-5</td>
</tr>
<tr>
<td>Handling Precautions</td>
<td>2-5</td>
</tr>
<tr>
<td>Fluid Recommendations</td>
<td>2-5</td>
</tr>
<tr>
<td>Fluid Contamination Checks</td>
<td>2-5</td>
</tr>
<tr>
<td>System Flushing Procedure</td>
<td>2-6</td>
</tr>
<tr>
<td>Hydraulic System Components</td>
<td>2-9</td>
</tr>
<tr>
<td>Hydraulic Pumps</td>
<td>2-9</td>
</tr>
<tr>
<td>Main Hydraulic Pump (Type 1)</td>
<td>2-9</td>
</tr>
<tr>
<td>Type One (1) Pump Adjustment</td>
<td>2-10</td>
</tr>
<tr>
<td>Main Hydraulic Pump (Type 2)</td>
<td>2-11</td>
</tr>
<tr>
<td>Type Two (2) Pump Adjustment</td>
<td>2-13</td>
</tr>
<tr>
<td>Emergency Pump</td>
<td>2-13</td>
</tr>
<tr>
<td>Emergency Pump Adjustment</td>
<td>2-13</td>
</tr>
<tr>
<td>Drive valves</td>
<td>2-14</td>
</tr>
<tr>
<td>Drive Relief Valve</td>
<td>2-14</td>
</tr>
<tr>
<td>Drive Valve Assembly</td>
<td>2-14</td>
</tr>
<tr>
<td>Hi/ Low Speed Drive Valve</td>
<td>2-14</td>
</tr>
<tr>
<td>Flow Divider Valve Assembly</td>
<td>2-14</td>
</tr>
<tr>
<td>Motion Control Valve Assembly</td>
<td>2-14</td>
</tr>
<tr>
<td>Drive Pilot Valve (Later Versions)</td>
<td>2-15</td>
</tr>
<tr>
<td>Hydraulic Fluid Reservoir</td>
<td>2-15</td>
</tr>
<tr>
<td>Hydraulic Reservoir Maintenance</td>
<td>2-15</td>
</tr>
<tr>
<td>High Pressure Filter</td>
<td>2-15</td>
</tr>
<tr>
<td>Boom Lift System</td>
<td>2-15</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-15</td>
</tr>
<tr>
<td>Platform</td>
<td>2-15</td>
</tr>
<tr>
<td>Ground</td>
<td>2-15</td>
</tr>
<tr>
<td>Lift Cylinder</td>
<td>2-16</td>
</tr>
<tr>
<td>Boom Telescope (Extend) System</td>
<td>2-16</td>
</tr>
<tr>
<td>Directional Control Valves</td>
<td>2-17</td>
</tr>
<tr>
<td>Platform</td>
<td>2-17</td>
</tr>
<tr>
<td>Ground</td>
<td>2-17</td>
</tr>
<tr>
<td>Pressure Reducing Valve</td>
<td>2-17</td>
</tr>
<tr>
<td>Telescope (Extend) Cylinder</td>
<td>2-17</td>
</tr>
<tr>
<td>Mechanical Extend Function</td>
<td>2-18</td>
</tr>
<tr>
<td>Superstructure Swing System</td>
<td>2-19</td>
</tr>
<tr>
<td>Directional Control Valve</td>
<td>2-19</td>
</tr>
<tr>
<td>Platform</td>
<td>2-19</td>
</tr>
<tr>
<td>Ground</td>
<td>2-19</td>
</tr>
</tbody>
</table>
Table of Contents (Continued)

Swing Drive Motor/Reducer Assembly 2-19
 Worm Gear Type .. 2-19
Swing Gear and Pinion Shaft Adjustment 2-20
Planetary Gear Type with Integral Brake 2-20
Swing Reducer/Motor Assembly
 Adjustment (MP60, MP 70, Later MP 80) 2-20
 Worm Gear Type with Integral Brake
 (MP80, Earlier) 2-21
 Swing Drive/Reducer Assembly Adjustment 2-21
Integral Brake Assembly 2-22
Swing System Maintenance 2-22
Platform Rotate System 2-23
 Rotate Control Valve 2-23
 Double Pilot Operated Check Valve 2-23
 Rotary Actuator 2-23
 Rotary Actuator Maintenance 2-23
Platform Rotator Manifold 2-23
Platform Level System 2-24
 Level Control Valve 2-24
 Double Pilot Operated Check Valve 2-24
 Master Level Cylinder 2-25
 Slave Level Cylinder 2-25
 Relief Valves ... 2-25
Steer System ... 2-26
 Drive/Steer Manifold Assembly 2-26
Hydraulic Swivel ... 2-26
 Steer Cylinder 2-26
 Steer Disconnect Knob 2-26
 Steer System Maintenance 2-26
Solenoid Valve Checks 2-27
HYDRAULIC FLUID

HANDLING PRECAUTIONS

⚠️ WARNING
PERSONS IN REGULAR CONTACT WITH MINERAL-BASED HYDRAULIC FLUID NEED TO BE AWARE OF THE IMPORTANCE OF THOROUGH HYGIENE, AND THE PROPER METHODS FOR HANDLING MINERAL OILS IN ORDER TO AVOID POTENTIAL HAZARDS TO HEALTH.

If mineral-based hydraulic fluid is SPLASHED INTO THE EYES, it must be WASHED OUT THOROUGHLY using abundant quantities of water. If irritation persists, medical advice should be sought.

Mineral oils act as solvents on the natural oils in the skin. FREQUENT AND PROLONGED SKIN CONTACT CAN CAUSE DERMATITIS OR SEVERE IRRITATION. Mineral-based hydraulic fluids normally present no health hazard when used properly. Protective clothing and proper washing facilities should be provided or be accessible.

⚠️ WARNING
HYDRAULIC FLUID UNDER PRESSURE CAN PENETRATE AND BURN THE SKIN, DAMAGE EYES, AND MAY CAUSE SERIOUS INJURY, BLINDNESS, AND EVEN DEATH.

FLUID LEAKS UNDER PRESSURE MAY NOT ALWAYS BE VISIBLE.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY, WITHIN A FEW HOURS.

FLUID RECOMMENDATIONS

We strongly recommend the use of MOBIL DTE-13M HYDRAULIC FLUID. An EQUIVALENT substitute can be used if absolutely necessary. Mineral-based hydraulic fluids produced by different companies will USUALLY mix with each other satisfactorily, but this IS NOT RECOMMENDED. When in doubt, consult your supplier.

MOBIL DTE-13M has proven to be suitable for use in all climates. For continued operation in temperatures below 32° F (0° C), use of MOBIL DTE-11M FLUID is satisfactory. For operation in tropical climates, the use of MOBIL DTE-15M is allowable.

FLUID CONTAMINATION CHECKS

Use the following as a guide to determine when analysis of the hydraulic fluid is necessary.

- Any time the hydraulic pump is replaced.
- If fluid discoloration is noticed in the hydraulic reservoir sight tube.
- If, after the first 50 hours of operation, the hydraulic filter elements are plugged.
- Any time the hydraulic filter elements show signs of metal content.
- Once every six months, under normal operating conditions.
- Every 3 months, in extremely dusty or dirty operating conditions.

The hydraulic fluid analysis must be done by a qualified laboratory. To ensure that you receive accurate recommendations about the fluid being analyzed, always provide the following information with the test sample.
• Type of hydraulic fluid. (See Lubrication Chart)

• Model and serial number of unit from which sample was taken.

• Purpose of analysis: i.e. pump failure, discoloration, etc.

• Type of analysis: i.e. complete to show additive breakdown, acid buildup, viscosity, type and percent of contaminants. Comparison to new fluid and recommendations.

Comply with contamination analysis and recommendations to achieve a clean, contamination free hydraulic system. Following the above guide will prevent premature failure of pumps, cylinder seals and drive motors, and unnecessary down time.

If system flushing and replacement of fluid is recommended, refer to the flushing procedure.

SYSTEM FLUSHING PROCEDURE

⚠️ WARNING

BLOCK THE WHEELS TO PREVENT UNEXPECTED MOVEMENT OF THE MACHINE.

1. With BOOMS DOWN AND FULLY RETRACTED (in stowed position), drain hydraulic fluid from hydraulic tank into a clean, empty container. Use an oil filter cart so the fluid may be reused if analysis is good.

2. When the hydraulic tank is empty, remove suction hose to pump, emergency pump hose, telescope retract return hose, vent (return) hose for telescope cylinder, manifold return hose, drive hose from pump with the tee for motor drain.

3. Remove all hoses between pump and high pressure filter.

4. Flush the hoses.

5. Remove hydraulic fluid filter, and flush the filter body and attaching hoses. Discard old filter element and replace.

6. With hoses removed from the hydraulic tank, flush out the tank.

7. Reinstall all the hoses removed in the previous steps EXCEPT the return lines to tank. Temporarily tie hoses together and position these hoses so that they will drain into a clean container.

8. If the hydraulic fluid removed from the reservoir is good, pump it (through a filter cart) back into the tank. If fluid is not usable, dispose of it properly and fill the hydraulic tank with filtered, fresh hydraulic fluid (refer to Lubrication Chart).

9. Open the suction line valve to allow fluid to flow to the hydraulic pump.

10. Loosen hose fittings at pump to allow pump to flood with hydraulic fluid. Tighten pump fittings.

11. Turn main power key switch to the "Ground" position.

12. Press "Engine Start" button to start engine.

13. Activate pump selector toggle switch on remote control pendant and hold at "Main" to activate engine powered pump.

⚠️ CAUTION

Use care when operating functions as return hydraulic fluid is now being returned to container provided.
14. Cycle all cylinder functions to flush the hydraulic components of the hydraulic fluid. This will remove old fluid from the hydraulic system as the cylinder is cycled to its maximum limits.

CAUTION

Monitor the hydraulic reservoir fluid level when cycling the unit functions. Add fluid as necessary to replace that being discharged to container through system return line. This fluid may be returned to the reservoir through a filter cart, if the fluid analysis shows that it is good.

Three cycles of ALL hydraulic cylinder functions should remove old hydraulic fluid.

15. Disconnect the return hoses for the drive motors. Tie the hoses together and let them drain into a clean container.

CAUTION

ALWAYS BLOCK THE WHEELS before you raise the machine.

16. Jack the front end of the unit so the front drive wheels are off the ground.

17. Activate pump selector toggle switch on remote control pendant and hold at "Main" to activate engine powered pump.

18. Activate the drive switch on remote control pendant to flush the drive circuit hydraulic components of the hydraulic fluid.

19. Activate the steer toggle switch on remote control pendant to flush the steer cylinder of the hydraulic fluid.

20. When the above procedures have been completed, re-connect system return hose to tank.

21. Fill hydraulic tank to full mark on sight gauge.

22. Operate all functions to their full extreme positions to ensure proper operation.

23. Check for leaks and correct as necessary. Unit is now ready to be placed back in operation.
HYDRAULIC SYSTEM COMPONENTS

Following is a description of the major components of the MP Full Pressure Hydraulic system.

HYDRAULIC PUMPS

There are two pumps on the machine; the main hydraulic pump and the emergency pump.

MAIN HYDRAULIC PUMP (TYPE 1)

The main hydraulic pump is a variable displacement pressure compensated radial piston pump.

Hydraulic fluid enters through the inlet ports. A common inlet gallery provides fluid to all eight inlet valves in the housing. Pistons radially surround an eccentric cam. The cam moves a bearing race upon which the pistons ride. Behind each piston is a spring which holds it against the bearing race.

As the pump shaft rotates low hydraulic pressure develops in the piston spring area during downward stroke of the piston. This low pressure allows the inlet valve to open filling the piston cavity with hydraulic fluid. The inlet valve closes at the end of the intake stroke of the piston.

High pressure is developed as the race pushes the piston outward. As pressure increases a discharge valve opens allowing the fluid to pass into the outlet gallery.

At the end of the stroke, the discharge valve closes. All discharge valves share a common outlet gallery in the pump housing.

An orifice is located between the crankcase and the inlet gallery. Any fluid flow past the pistons is routed through the orifice to the inlet gallery. This flow allows for cooling and lubrication.

Pressure compensated pumps are designed to provide "on demand" high pressure fluid regardless of
flow requirements up to the maximum pump output. The pressure compensator regulates fluid pressure into the pump crankcase. Increased pressure in the crankcase overcomes the piston spring pressure and hold the pistons away from the race, thereby destroying the pump.

TYPE ONE (1) PUMP ADJUSTMENT

WARNING

ESCAPING FLUID UNDER PRESSURE CAN PENETRATE THE SKIN CAUSING SERIOUS INJURY. RELIEVE PRESSURE BEFORE DISCONNECTING HYDRAULIC LINES. KEEP HANDS AND BODY AWAY FROM PINHOLES AND NOZZLES WHICH EJECT FLUIDS UNDER HIGH PRESSURE. USE A PIECE OF CARDBOARD OR PAPER TO SEARCH FOR LEAKS. DO NOT USE YOUR HAND.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, WITHIN A FEW HOURS, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY.

NOTE: Refer to "Machine Specifications" to determine maximum system pressure for your unit.

To adjust the system pressure:

- Install a 14 mm adapter to the high pressure test port (T-1) and connect a 5000 psi (345 Bar/352 Kg/cm²) gauge.

Main Hydraulic Pump (Type 1) Control Adjustment.
- Locate the adjusting screw on the side of the main pump adapter plate.

- Loosen the locknut and while viewing the pressure gauge, set system pressure to value specified in the "Machine Specifications".

- Turn the adjusting screw out to decrease pressure, in to increase pressure.

- After system pressure has been set, tighten the lock nut.

CAUTION

When first starting a unit where the pump setting is unknown, the adjusting screw should be set to a minimum depth (nearly all the way out) to prevent excessive pressure at start up.

MAIN HYDRAULIC PUMP (TYPE 2)

All control is achieved by the proper positioning of the swash plate. This is achieved by a servo piston acting on one end of the swash plate working against the combined effect of the off-setting forces of the pistons and centering spring on the other end. The control spool acts as a metering valve which varies the pressure behind the servo piston.

The amount of flow produced by the piston pump is dependent upon the length of stroke of the pumping pistons (see Pumping Action figure). This length of stroke, in turn, is determined by the position of the swash plate. Maximum flow is achieved at an angle of 17°.

The rotating piston barrel, driven by the prime mover, moves the pistons in a circular path and the piston slippers are supported hydrostatically against the face of the swash plate. When the swash plate is in a vertical position, perpendicular to the centerline...
of the piston barrel, there is no piston stroke and consequently no fluid displacement. When the swash plate is positioned at an angle, the pistons are forced in and out of the barrel and fluid displacement takes place. The greater the angle of the swash plate, the greater the piston stroke.

Swash plate angle controls the output flow of the pump (see Pressure Compensated Control figure). Swash plate angle is controlled by the force generated against the swash plate by the pumping pistons and by the force of the servo piston. The force of the servo piston is greater than the force of the pumping pistons when both are at the same pressure.

By means of internal porting, pressure is connected from the output port to the servo piston via orifice "E", and to the control spool via passage "D". Also, pressure is applied to the control spool chamber through orifice "F". As long as the pressures at both ends of the control spool remain equal, the spool will remain offset to the right, due to the added force of the spring.

When pressure reaches the setting of the compensator control, the dart leaves its seat causing the pressure in the spool chamber to be reduced. The spool now moves downward causing pressure in the servo piston cavity to vent via port "A". The reduced pressure at the servo piston allows the servo piston to move to the right. This movement reduces the angle of the swash plate and thereby reduces the pump output flow.
As pump pressure on the control spool drops below pressure and spring force in the spool chamber, the control spool moves upward to maintain an equilibrium on both sides of the spool. If pump pressure falls below compensator control setting, the control spool moves up, bringing the pump to maximum displacement.

TYPE TWO (2) PUMP ADJUSTMENT

WARNING

ESCAPING FLUID UNDER PRESSURE CAN PENETRATE THE SKIN CAUSING SERIOUS INJURY. RELIEVE PRESSURE BEFORE DISCONNECTING HYDRAULIC LINES. KEEP HANDS AND BODY AWAY FROM PINHOLES AND NOZZLES WHICH EJECT FLUIDS UNDER HIGH PRESSURE. USE A PIECE OF CARDBOARD OR PAPER TO SEARCH FOR LEAKS. DO NOT USE YOUR HAND.

IF MINERAL-BASED HYDRAULIC FLUID HAS PENETRATED THE SKIN, IT MUST BE MEDICALLY TREATED, WITHIN A FEW HOURS, BY A DOCTOR FAMILIAR WITH THIS TYPE OF INJURY.

Differential pressure will not normally change through the life of the pump. If this control has been tampered with, a close approximation of the correct setting can be made by the following method.

1. Install a 0-3000 PSI (0-207 Bar) gauge in the port named "Outlet" (see Pressure Compensated Control figure).

2. Deadhead the pump (no flow).

3. Back the pressure compensator adjustment out (full counterclockwise).

4. Turn the differential adjustment knob until 400-425 PSI (28-29 Bar) is reached.

EMERGENCY PUMP

The emergency pump is driven by a 12 volt DC electric motor. This pump delivers hydraulic fluid, under pressure, to the manifold assembly. The electric motor is rated for non-continuous duty and will fail prematurely if activated continuously for extended time periods.

NOTE: This pump should only be used in emergency situations.

EMERGENCY PUMP ADJUSTMENT

The emergency pump pressure setting screw is located on the side of the adapter plate. To adjust the relief pressure on the pump, remove the acorn nut, loosen the jam nut and turn the adjusting screw in to increase pressure. To decrease pressure, turn the adjusting screw out (see "Machine Specification" for correct setting).
DRIVE VALVES

NOTE: Refer to "Machine Specifications" to determine maximum system pressure for your MP.

DRIVE RELIEF VALVE

The drive relief valve is located between the outlet of one drive motor and the inlet to the other drive motor. When the drive motors are in series (high speed drive) the valve will relieve any pressure spikes when driving and steering. In other words, this valve prevents the motors from cavitating or seeing pressure greater than 3,000 PSI (207 Bar). The drive relief valve is factory set at 3,000 PSI (207 Bar) and requires no adjustments.

DRIVE VALVE ASSEMBLY

Hi/ Low Speed Drive Valve

The hi/low speed drive valve is a series parallel valve located on the undercarriage and used to control the fluid flow for travel speed. The valve is factory set and requires no adjustment.

Flow Divider Valve Assembly

The flow divider valve assembly consists of two valves: a flow divider/combiner valve and a gate (globe) valve, which is located on the undercarriage and is in the drive circuit.

The Flow Divider/Combiner Valve equally divides or combines hydraulic flow from the drive valve depending on direction of travel, insuring that the drive motors will have equal torque and speed.

The Gate (globe) Valve allows hydraulic fluid to transfer from one drive motor to the other. When making turns the outside tire turns faster and requires more hydraulic fluid flow. Since the flow divider gives each motor equal flow the globe valve will allow the transfer of hydraulic fluid from the inside wheel to the outside wheel and prevent tire scrubbing on hard surfaces. For good performance in most conditions, the setting should be 1-1/2 turns open from the closed position.

Motion Control Valve Assembly

The motion control valve assembly consists of two valves: a motion control valve and a flow control valve. This valve assembly, which is in the drive circuit, is located on the undercarriage on the other end of the drive valve assembly from the flow divider valve assembly.

The Motion Control Valve restrains return flow from the drive motors to prevent cavitation and the drive motors from running ahead of pump flow. Also located in the motion control valve manifold is a shuttle valve which provides hydraulic pressure to release the drive motor brakes in either forward or reverse. This valve set-up controls speed descending a grade (runaway).

The Flow Control Valve meters the hydraulic fluid flow released from the spring applied hydraulically released brake assemblies for a smooth braking action. The valve setting is 2 to 3 turns from the closed position.
Drive Pilot Valve (Later Versions)

The drive pilot valve is a 4-way, 2-position, normally open, electrically energized pilot valve. It allows pilot pressure to shift the hi/ low speed drive valve from parallel to series, or series to parallel operation.

HYDRAULIC FLUID RESERVOIR

The hydraulic fluid reservoir consists of the tank, a sight gauge, a filler cap with filter, a strainer, a vent, one valve for suction line, five valves for return lines and a valve for the emergency pump suction line.

BOOM LIFT SYSTEM

The boom lift system consists of hydraulic directional control valves with pressure compensated flow controls in the ground valve bank assembly, and a lift cylinder with a counterbalance (holding) valve for the boom.

DIRECTIONAL CONTROL VALVES

Platform

The platform directional control valve directs fluid flow to the boom lift cylinder to provide hydraulic power for raising or lowering the boom. This valve is a 3 position, 4 way manually operated valve. It can be cleaned with a solvent and blown dry with air. There is a seal kit available but the valve cannot be adjusted.

Ground

The ground directional control valve is located in the valve bank assembly with the telescope and swing functions. This valve directs fluid flow to the boom lift cylinder to provide hydraulic power for raising or lowering the boom. This valve is a 3 position, 4 way manually operated valve. The pressure compensated flow control valve sets the boom lift and lower speeds. It can be cleaned with a solvent and blown dry with air. There is no seal kit available for this valve and it cannot be adjusted.

HIGH PRESSURE FILTER

The hydraulic high pressure filter is a non-bypassing filter. This filter allows maximum fluid flow as long as the filter element is free of contaminants. When the filter is clogged, it shuts down the hydraulic flow but will not crush the filter element due to a differential pressure limiting valve. The build-up of pressure across the filter will affect system performance and act as an indication of a clogged filter.
LIFT CYLINDER

The boom lift function is performed by a double acting cylinder. The cylinder contains a counterbalance (holding) valve, which will prevent unintended movement of the cylinder should a hose or fitting develop a leak. When the boom is lowered, fluid flows to the rod end cylinder port and to the counterbalance valve, opening this valve and allowing fluid in the base end of the cylinder to flow back to the hydraulic reservoir. When the boom section is raised, fluid flows to the base end cylinder port and to the counterbalance valve, opening this valve and allowing fluid in the rod end of the cylinder to flow back to the hydraulic reservoir.

BOOM TELESCOPE (EXTEND) SYSTEM

The boom telescope system consists of a hydraulic directional control valve in the platform valve bank assembly, another directional control valve in the ground valve bank assembly, a pressure reducing valve, a telescope cylinder with a double counterbalance valve, and a mechanical extension (chains) on three section booms.

Boom Telescope System Components on Two Section Booms.

Boom Telescope System Components on Three Section Booms.
DIRECTIONAL CONTROL VALVES

Platform

The platform directional control valve directs fluid flow to the telescope cylinder to power the extending or retracting of the upper boom. This valve is a 3 position, 4 way manually operated valve.

Ground

The ground directional control valve is located in the ground valve bank assembly with the lift and swing functions. This valve directs fluid flow to the telescope cylinder thereby extending or retracting the boom. This valve is a 3 position, 4 way manually operated valve.

PRESSURE REDUCING VALVE

The pressure relief valve limits the pressure on the base end of the cylinder to 1500 PSI (104 Bar, 105.5 Kg/cm²) to prevent the cylinder rod from buckling. The pressure relief valve is factory set at 1500 PSI (104 Bar, 105.5 Kg/cm²) and needs no adjustment.

TELESCOPE (EXTEND) CYLINDER

The telescope (extend) cylinder controls the extending and retracting of the boom. The extend and retract functions are performed by a double acting cylinder. The cylinder contains two counterbalance (holding) valves, which prevent unintended movement of the cylinder should a hose or fitting develop a leak. When the boom section is extended, fluid flows to the base end cylinder port and to the counterbalance valve, opening this valve and allowing fluid in the rod end of the cylinder to flow back to the reservoir. When the boom section is retracted, fluid flows to the rod end cylinder port and to the counterbalance valve, opening this valve and allowing fluid in the base end of the cylinder to flow back to the reservoir.

On a three section boom, the telescope cylinder is connected to the base and mid boom sections only. The tip boom section is chain operated.

Telescope (Extend) Cylinder.
MECHANICAL EXTEND FUNCTION

On units having three boom sections, the third boom section is extended and retracted using chains. Two chains are used to extend the boom and one chain to retract the boom. The chains are anchored at one end to a bracket on the base boom, are routed around sheaves mounted on the mid boom section and are anchored at the other end to the tip boom (see illustration below). As the telescope cylinder extends or retracts the mid boom, the chains and sheaves cause the tip boom to extend or retract at the same rate.

Two chains are used for the extend function because those chains support the load in the platform, especially at higher boom angles.
SUPERSTRUCTURE SWING SYSTEM

The superstructure swing system consists of a hydraulic directional control valve in the platform valve bank assembly, another directional control valve in the ground valve bank assembly, swing drive/reducer assembly, hydraulic motor, and an integral brake assembly.

DIRECTIONAL CONTROL VALVE

Platform

The platform swing control valve directs fluid flow to the swing motor to power clockwise or counterclockwise superstructure rotation. This valve is a 3 position, 4 way manually operated valve in a five (5) spool assembly.

Ground

The ground swing control valve is located in the valve bank assembly with the telescope and lift functions. This valve directs fluid flow to the swing motor to power clockwise or counterclockwise superstructure rotation. This valve is a 3 position, 4 way manually operated valve.

SWING DRIVE MOTOR/REDUCER ASSEMBLY

There are three types of swing drive motor/reducer assemblies used on the MP series.

Worm Gear Type

The worm gear swing reducer used on the MP 40 and MP 50 allows the motor output to be reduced to a fractional speed and greatly increasing motor torque. This allows the superstructure to rotate at a slow controlled speed when fluid power is applied to the swing drive motor.

A pilot operated check valve (swing lock valve) is placed in the swing motor hydraulic circuit to prevent the superstructure from rotating when not engaged by the swing directional control valve.

Worm Gear Type Swing Reducer.

Swing Motor.
Swing Gear and Pinion Shaft Adjustment

To adjust the swing gear on the MP 40 and MP 50, loosen the gearbox side lock bolts and jack screws. Adjust the front lock bolts and jack screws.

NOTE: Adjust so the swing reducer pinion gear mates to the large swing bearing gear with zero backlash and no preload. Excessive backlash will lead to jerky or erratic rotation and possible breakage of gear teeth. Excessive preload will lead to premature wear and possible breakage of gear teeth.

Retighten the side lock bolts and jack screws. Torque the swing pinion gear guard bolts (see "Machine Specification").

Planetary Gear Type with Integral Brake

The planetary gear swing reducer used on the MP 60, MP 70, and MP 80 (later) allows the motor output to be reduced to a fractional speed and greatly increasing motor torque. This allows the superstructure to rotate at a slow controlled speed when fluid power is applied to the swing drive motor.

The integral brake assembly, part of the reducer, is spring applied and hydraulic released at a pressure of approximately 250 PSI (17 Bar, 17.6 Kg/cm²). Hydraulic fluid flow is transferred through a directional control valve which directs fluid flow to the swing motor to provide clockwise and counterclockwise superstructure rotation.

Swing Reducer/Motor Assembly Adjustment (MP60, MP 70, Later MP 80)

To adjust the swing reducer/drive assembly, the eccentric bushing located under the reducer must be turned. Remove the eccentric lock plate that holds the eccentric bushing in place. The eccentric lock plate is located on the superstructure in front of the swing reducer.
Next loosen the mounting bolts and turn the eccentric bushing with a screwdriver.

NOTE: Adjust so the swing reducer pinion gear mates to the large swing bearing gear with zero backlash and no preload. Excessive backlash will lead to jerky or erratic rotation and possible breakage of gear teeth. Excessive preload will lead to premature wear and possible breakage of gear teeth.

Replace the eccentric lock plate and torque the mounting bolts (see "Machine Specification").

Worm Gear Type with Integral Brake (MP80, Earlier)

The swing drive/reducer assembly allows the rotating motor power to be reduced to a fractional speed thus increasing motor torque. This then allows the superstructure to rotate at a controlled speed when fluid power is applied to the swing drive.

![Diagram of Swing Drive/Reducer Assembly](image)

Swing Drive Motor.

Swing Drive/Reducer Assembly Adjustment

There should be zero backlash between the swing gear and pinion shaft. Do not pre-load the pinion shaft to the swing bearing.

To adjust the swing drive/reducer assembly, the eccentric bushing located under the reducer must be turned. Remove the locking bracket that holds the eccentric bushing in place. The locking bracket is located on the superstructure in front of the swing reducer.

Next loosen the foot mount plate bolts on the swing drive/reducer and turn the eccentric bushing with a punch.

NOTE: There is no backlash or pinion pre-load in adjustments.

Replace the locking bracket and torque the foot mount plate bolts.
Integral Brake Assembly

The integral brake assembly is spring applied and hydraulic released at a pressure of approximately 250 PSI (17 Bar, 17.6 Kg/cm²). Hydraulic fluid flow is transferred through a shuttle assembly located on the swing motor so that whichever direction is selected, fluid flow will be diverted to release the brake.

SWING SYSTEM MAINTENANCE

Check the lubricant on the swing bearing or the oil in the optional "oil bath" style swing bearing enclosure monthly for metal shavings or other contamination.

Change the oil if contaminated (see Lubrication Chart).

Check the fluid level in the swing drive gear box every other month (see Lubrication Chart).

Change the fluid in the swing drive gear box every two years (see Lubrication Chart).
PLATFORM ROTATE SYSTEM

The platform rotate system consists of a platform rotate control valve, a double pilot operated check valve, a rotary actuator and a platform rotator manifold. The platform rotate system can only be operated from the platform control console.

DOUBLE PILOT OPERATED CHECK VALVE

The double pilot operated check valve acts as a locking component for the rotary actuator and prevents the platform from rotating except when the rotate circuit is activated. When the platform rotate circuit is activated, partial flow is piloted over to the return side to unseat the check valve and thus unlock the rotary actuator.

ROTARY ACTUATOR

The rotary actuator is a rack and pinion type. Hydraulic fluid enters the actuator from either side depending on the control valve direction and moves the rack, causing the pinion shaft to rotate.

PLATFORM ROTATOR MANIFOLD

The platform rotator manifold is mounted as an integral part of the rotary actuator. The platform rotator manifold acts as a pressure relief valve to prevent damage to the rotary actuator.

ROTATE CONTROL VALVE

This valve is a three position, four way valve which is manually operated. This control valve directs fluid flow to the rotate functions.

ROTATE LEVER

Rotate Control Valve.
PLATFORM LEVEL SYSTEM

The platform leveling system consists of a level control valve, slave leveling cylinder with a counterbalance (holding) valve, master leveling cylinder, double pilot operated check valve and two relief valves.

LEVEL CONTROL VALVE

The platform leveling system automatically keeps the platform level, using a master/slave cylinder arrangement. As the boom is raised or lowered, fluid is forced from one cylinder to the other in a closed loop, which keeps the platform parallel to the ground in any boom position. Due to slight internal leakage, fluid may at times need to be added to the leveling circuit through the platform level control valve.

The platform level system is only controlled from the platform.

LEVEL CONTROL VALVE

This valve is a three position, four way valve which is manually operated. This control valve directs fluid flow to the level functions.

Level Control Valve.

DOUBLE PILOT OPERATED CHECK VALVE

The double pilot operated check valve acts as a locking component for the leveling function and prevents the cylinders from drifting.
MASTER LEVEL CYLINDER

The master leveling cylinder is a double acting cylinder located between the upper frame of the superstructure and the boom. Whenever the boom is raised or lowered, the master cylinder is forced to extend or retract. The fluid displacement from the master level cylinder is in turn sent up the boom to the slave level cylinder. This forces the slave level cylinder to move the same distance as the master level cylinder.

SLAVE LEVEL CYLINDER

The slave leveling cylinder is a double acting cylinder located between the tip boom and the platform. This cylinder controls the position of the platform relative to the tip boom.

The slave leveling cylinder contains two holding valves. The holding valves prevent platform movement in the event of hose failure.

RELIEF VALVES

The relief valves are factory set at 3000 PSI (207 Bar, 211 Kg/cm²) and prevent high pressure spikes in the leveling circuit that could result in component damage. High pressure spikes can occur when the platform is manually controlled for leveling, which cause the slave level cylinder to bottom out before the master level cylinder stops moving as the boom is lowered.
STEER SYSTEM

The steer system consists of the steer cylinder, a valve section in the drive/steer manifold assembly, hydraulic swivel, a steer toggle switch on the pendant control and a steer rocker switch on the drive lever at the platform control console.

DRIVE/STEER MANIFOLD ASSEMBLY

The steer system is controlled by the bottom valve on the drive/steer manifold assembly. This valve is activated from the platform by a rocker switch on top of the drive control lever. When the switch is pressed to steer "LEFT" or "RIGHT", the steer valve solenoid energizes and the spool shifts to allow fluid flow to power the steer cylinder rod in either direction.

The steer directional control valve is activated from the ground by a toggle switch located on the optional pendant control on the superstructure. When the toggle switch is moved to steer "LEFT" or "RIGHT", a solenoid energizes and the valve spool shifts to power the steer cylinder rod in either direction.

HYDRAULIC SWIVEL

The hydraulic swivel allows passage of hydraulic fluid from the steer valve segment in the superstructure to the steer cylinder in the undercarriage and back. The swivel allows for 360° of continuous superstructure rotation in either direction.

STEER CYLINDER

The cylinder is double acting and is directly connected to the steering linkage assembly. This cylinder powers all steering movements.

STEER DISCONNECT KNOB

The steer disconnect knob must be pushed in to engage the steer system. Pull the steer disconnect knob out before towing to disengage steer system.

STEER SYSTEM MAINTENANCE

Check all pins on steering linkage and steer cylinder for excessive play, and ensure that all clips are in place and secure.

Lubricate linkage as required (see Lubrication Chart).

Check cylinder and hoses for hydraulic fluid leakage and security.
SOLENOID VALVE CHECKS

To check solenoid operation:

1. Disconnect wires to solenoid.

2. Test resistance of coil. If resistance of coil is greater than 10 ohms, replace coil.

To check valve spool operation:

1. Connect one terminal or lead to battery ground source.

2. Connect power to other terminal or lead. When power is applied, you should be able to feel the spool shift while holding it in your hand. When current is removed, similarly, you should be able to feel the spool shift while holding it in your hand. If spool does not shift clean and/or replace.

To clean valve:

- Rinse in clean solvent and blow dry with air.
SECTION 3:
DRIVE SYSTEM
Table of Contents, Section 3

Drive System Components .. 3-3
Drive Motor and Brake Assembly .. 3-3
Hydraulic Manifold Valve Assembly 3-4
Drive Valve Assembly .. 3-4
Selector Valve ... 3-4
Motion Control Valve Assembly ... 3-4
 Motion Control Valve ... 3-4
 Flow Control Valve .. 3-5
Flow Divider Valve Assembly .. 3-5
 Flow Divider/Combiner Valve ... 3-5
Gate (Globe) Valve ... 3-5
Drive Pilot Valve (Later Versions) 3-5
Drive Relief Valve ... 3-5
Toggle Switch on the Pendant Control 3-5
Drive Enable Valve .. 3-5
Platform Control Handle ... 3-5
DRIVE SYSTEM COMPONENTS

The MP is propelled by two hydraulic drive motors with integral brake assemblies. The drive circuit consists of the two hydraulic drive motor/brake assemblies, the hydraulic manifold valve assembly, a selector valve, the drive valve assembly, a drive relief valve, a brake metering valve, a drive enable valve at the platform, a toggle switch on the pendant control and a platform drive control valve.

The brake assembly is a disc type brake. It is a wetted disc which is spring applied with hydraulic release.

NOTE: Internal leakage in the motor is passed through the brake disc and back to the main hydraulic reservoir through the two case drain lines thereby cooling the brake and preventing brake disc wear.

DRIVE MOTOR AND BRAKE ASSEMBLY

The drive motor is keyed to a shaft which in turn is splined on both ends. One end of the splined shaft is used for the brake while the other end is inserted into the gear reducer assembly.

Motor Assembly.

Brake Assembly.
HYDRAULIC MANIFOLD VALVE ASSEMBLY

The drive system is controlled by valves on the hydraulic manifold valve assembly mounted on the superstructure, to the right of the control box. These valves are activated by the drive control lever on the platform control console or a toggle switch on the pendant control at the ground station. When the drive control lever or the toggle switch is pushed to "FORWARD" or "REVERSE", the valve spools shift to allow hydraulic fluid flow to the drive motors.

There are two configurations of hydraulic manifold, depending on the type of hydraulic pump. One type has only one high speed directional valve, while the other type has two. The low speed valve and the high speed valve(s) are 4-way, three position solenoid operated valves.

Drum Valve Assembly (Type 1).

LOW SPEED DIRECTIONAL VALVE

DIVERTER VALVE

CONTROL VALVE MANIFOLD

HIGH SPEED DIRECTIONAL VALVE

STEER DIRECTIONAL VALVE

Hydraulic Manifold Valve Assembly (Type 2).

DRIVE VALVE ASSEMBLY

SELECTOR VALVE

The selector valve used in the drive system allows for a pilot pressure to shift the directional control spool changing the drive system flow from series flow to parallel flow. This allows the unit to go from low speed to high speed drive.

MOTION CONTROL VALVE ASSEMBLY

The motion control valve assembly consists of two valves: a motion control valve and a flow control valve, which is mounted on the top of the motion control valve.

Motion Control Valve

This valve shuttles hydraulic fluid flow to the integral brake assemblies and produces a back pressure in the drive system using two counterbalance valves to prevent uncontrolled movement.
The gate (globe) valve can be adjusted as to the amount of fluid allowed to pass but the correct setting should be 1-1/2 turns open from the closed position. In this position the motors will load slightly and allow a metered flow of hydraulic fluid to pass to the outboard driving wheel.

Drive Pilot Valve (Later Versions)

The drive pilot valve is a 4-way, 2-position, normally open, electrically energized pilot valve. It allows pilot pressure to shift the hi/low speed drive valve from parallel to series, or series to parallel operation.

DRIVE RELIEF VALVE

The drive relief valve is located on the underside of the undercarriage, on the side wall. This valve is factory set at 3000 PSI (207 Bar, 21.1 Kg/cm²) and requires no adjustments. This valve assures that the drive system will receive only this pressure while in the drive mode.

TOGGLE SWITCH ON THE PENDANT CONTROL

To operate drive function from ground, use "Drive" toggle switch on the pendant control. See "Section 4: Electrical System" for switch replacement.

DRIVE ENABLE VALVE

The drive enable valve, located inside the platform control console, is a 2-way valve. When it is open, fluid is allowed to go to the drive handle to control the pump flow output. This valve is normally closed when operating the boom functions.

PLATFORM DRIVE CONTROL HANDLE

The platform drive control handle is a proportional control valve which controls the displacement of the main hydraulic pump, and therefore, proportionally controls drive speed.
SECTION 4:
ELECTRICAL SYSTEM
Table of Contents, Section 4

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical System</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Maintenance (In Storage)</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Maintenance (In Use)</td>
<td>4-3</td>
</tr>
<tr>
<td>Battery Preventive Maintenance</td>
<td>4-4</td>
</tr>
<tr>
<td>Battery Replacement</td>
<td>4-4</td>
</tr>
<tr>
<td>Movement Alarm</td>
<td>4-4</td>
</tr>
<tr>
<td>Tilt Alarm</td>
<td>4-4</td>
</tr>
<tr>
<td>Tilt Alarm Test</td>
<td>4-4</td>
</tr>
<tr>
<td>Tilt Alarm Adjustment</td>
<td>4-5</td>
</tr>
<tr>
<td>Relays</td>
<td>4-5</td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td>4-5</td>
</tr>
<tr>
<td>Limit Switches</td>
<td>4-5</td>
</tr>
<tr>
<td>Emergency Pump</td>
<td>4-5</td>
</tr>
<tr>
<td>Emergency Stop Button</td>
<td>4-6</td>
</tr>
<tr>
<td>Pendant Switch Removal</td>
<td>4-6</td>
</tr>
<tr>
<td>Ground Control Cabinet Switch Removal</td>
<td>4-6</td>
</tr>
<tr>
<td>Platform Console Switch Removal</td>
<td>4-6</td>
</tr>
</tbody>
</table>
ELECTRICAL SYSTEM

The following section is a description of maintenance for the major components of an MP electrical system.

BATTERY

A 12 volt battery supplies the electrical current required to operate the electrical circuits for an MP.

BATTERY MAINTENANCE (IN STORAGE)

Follow these procedures for maintenance of batteries on a machine not in use:

Keep batteries clean. Electrolyte of “wet” batteries should be checked regularly, and kept at proper levels.

Never stack one battery directly on top of another, because post or container damage can result. If batteries are stored individually, place supporting boards between layers. Do not stack more than three high, and rotate stock so that the oldest batteries are used first.

“Wet” batteries should be kept fully charged. A “wet” battery, while in storage, should be recharged to full charge at the following intervals:

<table>
<thead>
<tr>
<th>If stored at:</th>
<th>Recharge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 40° F (4° C)</td>
<td>None required</td>
</tr>
<tr>
<td>40° to 60° F (4° to 15° C)</td>
<td>Every 2 months</td>
</tr>
<tr>
<td>Above 60° F (15° C)</td>
<td>Every month</td>
</tr>
</tbody>
</table>

BATTERY MAINTENANCE (IN USE)

Check battery and surrounding area for signs of damage or corrosion.

Check battery terminals for:

- **Corrosion.** Regularly clean connections and apply a non-metallic grease or protective spray to retard corrosion.

- **Loose connections.** Be sure all cable connections are tight, and that good contact is made to terminals.

- **Broken or frayed cables.** Be sure all cable connections are good, and that no loose or broken wires are exposed. Replace as needed.

Check battery electrolyte level. Replenish the electrolyte, if necessary. Remove vent caps before filling, and USE ONLY DISTILLED WATER. Fill all cells to the proper level. Do not overfill. Fill to level indicator (or 1/2 inch over the top of the separators if there is no level indicator). Fill after charging to prevent overflow of acid due to expansion. Do not use a hose to add water to batteries.

Allowing the electrolyte level to drop below the top of the separators will lead to shortened battery life. Excessive water usage can indicate that a battery has been overcharged, has been subjected to excessively high temperatures, or is nearing the end of its service life.

Keep battery clean. Wash the top of the battery, making sure all vent caps are in place. Do not allow cleaning water or other foreign matter to enter the cells. Use a solution of bicarbonate of soda and water to wash the battery if there is an accumulation of acid.
BATTERY PREVENTIVE MAINTENANCE

Once a month, after the battery has been charged, spot check the specific gravity of two or more cells. A fully charged battery should indicate 1.28 specific gravity. If low readings are noted, check the following:

- Check terminals for corrosion, loose connections and broken or frayed cables.
- Check all cells with a hydrometer for variation in specific gravity. A variation of 0.03 points or more between cells is cause for concern. Mark the low cells.

Recheck specific gravity of all cells after recharging.

BATTERY REPLACEMENT

To remove the battery, follow these procedures:

⚠️ WARNING

BEFORE REMOVING BATTERY FROM THE UNIT, TURN OFF THE IGNITION SWITCH. THERE SHOULD BE NO POWER TO THE MACHINE.

⚠️ CAUTION

Always disconnect the negative battery cables first.

Remove bolts holding battery to superstructure.

Lift the battery from the superstructure. Put the battery to the side and dispose of properly.

⚠️ CAUTION

Always connect the positive battery cable first.

To install the battery, lift and position it on superstructure. Secure battery in position with wing nuts and battery hold downs. Connect battery cables.

MOVEMENT ALARM

The movement alarm is activated as soon as the platform console drive controller or drive toggle switch on the pendant control is moved off the center "Neutral" position.

⚠️ WARNING

THE MOVEMENT ALARM IS PROVIDED FOR YOUR PROTECTION, AND PROTECTION OF PERSONS WORKING IN IMMEDIATE AREA. DISABLING THIS IMPORTANT SAFETY DEVICE MAY RESULT IN DEATH OR SERIOUS INJURY.

The movement alarm is located behind the ground control cabinet on a support weldment. To replace it, remove the movement alarm from the weldment and disconnect the wires.

TILT ALARM

The tilt alarm gives an audible warning when the machine is five degrees or more out of level. It is located behind the ground control cabinet on a support weldment. To replace the tilt alarm, remove it from the support and disconnect the wires.

TILT ALARM TEST

The alarm can be tested by raising the boom past horizontal, and manually tipping the alarm sensor. This "Push-to-Test" feature enables the tilt alarm to be tested without losing its adjustment.

Individually push down on each of the three fastened corners of the tilt alarm.

There should be enough travel to cause the alarm to sound as each corner is pressed (there is approximately a three second delay).

If the alarm does not sound, perform the Tilt Alarm Adjustment procedure and repeat this test procedure.
On some models, there are three LED's. The green LED indicates the unit has power. The red LED indicates the sensor is tilted beyond 4-1/2°. The yellow LED indicates the sensor is tilted beyond 4-1/2° and the 3 second delay has expired (warning horn should sound). On these units there is an in-line 2 amp fuse. Check the fuse first, if the alarm does not sound. Then, perform the Tilt Alarm Adjustment procedure.

TILT ALARM ADJUSTMENT

The tilt alarm can be adjusted. Before attempting to adjust the alarm, park the machine on a flat, level surface, and raise the boom.

For some models, level the base of the alarm by tightening each of the three flange nuts until the level bubble is centered.

For other models:

1. Level the base of the alarm by tightening each of the three flange nuts to take up approximately one half of its spring's travel. During the remainder of the adjustment procedure, DO NOT ADJUST THE NUT ON THE 90° CORNER.

2. Check to be sure the electrical connections are correct. Slowly tighten the nut on one of the two corners ADJACENT to the 90° corner until the light-emitting diode (LED) just turns on, indicating that the circuit is closed. Note the position of the nut.

3. Loosen the nut (LED will go out), carefully counting the number and fraction of turns until the LED lights up again. Divide that number by two and tighten the nut by this number of turns.

4. Adjust the nut on the OTHER corner adjacent to the 90° corner in the same manner. The alarm is now level, to the degree of accuracy determined by the nut adjustments and the surface on which the machine is sitting. Test the tilt alarm for proper function.

RELAYS

There are relays located in the ground control cabinet. (Refer to the schematic at the end of this manual for relay functions and interconnect.)

CIRCUIT BREAKERS

There is one 20 amp circuit breaker mounted on the face of the ground control cabinet, and two 20 amp and one 4 amp thermal reset circuit breakers inside the ground control cabinet.

If the 20 amp circuit breaker is tripped, re-set it by pushing in the button. If the breaker trips again, the cause of the high current draw must be corrected prior to further operation. If the breakers inside the cabinet are tripped by heat of the current draw, they will reset themselves when they cool down.

LIMIT SWITCHES

There are limit switches for the boom telescope and boom hoist functions. The boom telescope limit switch is located on the lower right side of the base boom. The boom hoist limit switch is located on the center post of the superstructure.

Unless the boom hoist and telescope limit switches are closed as shown on the unit electrical schematic at the end of this manual, the unit will only be able to travel at creep speed.

EMERGENCY PUMP

There is an emergency pump mounted at the base of the hydraulic tank. It is activated when the Emergency Pump push button on either the platform control console or the remote control pendant is pressed. When either push button is pressed and held, the emergency pump circuit is energized, allowing hydraulic functions (drive, steer or boom functions) should the engine powered hydraulic pump be disabled.
EMERGENCY STOP BUTTON

There is an emergency stop button on the ground control box and at the platform controls.

When the emergency stop button is pressed, all functions stop immediately and the wheel brakes are automatically applied. Turn the button clockwise and pull up to reset.

To replace the emergency stop button, open the ground control box to gain access for button removal. Remove the appropriate button mounting screws and wires.

PENDANT SWITCH REMOVAL

To replace a pendant switch or button, remove the four pendant cover screws to gain access for button removal. Remove the appropriate button mounting screws and wires.

GROUND CONTROL CABINET SWITCH REMOVAL

To replace a ground control switch or button, disengage the ground control cover retaining screws to gain access for switch or button removal. Remove the appropriate button mounting screws and wires.

PLATFORM CONSOLE SWITCH REMOVAL

To replace a platform switch or button, remove the two platform console screws and swing the console up on its hinges, to gain access for button removal. Remove the appropriate switch or button mounting screws and wires.
SECTION 5:
MECHANICAL COMPONENTS
Table of Contents, Section 5

<table>
<thead>
<tr>
<th>Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Components</td>
<td>5-3</td>
</tr>
<tr>
<td>Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Changing Tires</td>
<td>5-3</td>
</tr>
<tr>
<td>Wheels and Lug Nuts</td>
<td>5-3</td>
</tr>
<tr>
<td>Drive Hub Assembly</td>
<td>5-4</td>
</tr>
<tr>
<td>Steer Cylinder Pins</td>
<td>5-5</td>
</tr>
<tr>
<td>Rod End Cylinder Pin Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Base End Cylinder Pin Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Steer Cylinder</td>
<td>5-5</td>
</tr>
<tr>
<td>Steer Cylinder Seal Replacement</td>
<td>5-5</td>
</tr>
<tr>
<td>Tie Rod Assembly</td>
<td>5-6</td>
</tr>
<tr>
<td>Tie Rod Assembly Replacement</td>
<td>5-6</td>
</tr>
<tr>
<td>Superstructure</td>
<td>5-7</td>
</tr>
<tr>
<td>Platform</td>
<td>5-8</td>
</tr>
<tr>
<td>Hoses and Cables</td>
<td>5-8</td>
</tr>
<tr>
<td>Miscellaneous Equipment</td>
<td>5-8</td>
</tr>
<tr>
<td>Boom</td>
<td>5-8</td>
</tr>
<tr>
<td>Boom Pivot Pin and Bushing Replacement</td>
<td>5-9</td>
</tr>
<tr>
<td>Wear Pads</td>
<td>5-9</td>
</tr>
<tr>
<td>Rear (Upper End) Wear Pad Replacement</td>
<td>5-10</td>
</tr>
<tr>
<td>Front (Lower End) Wear Pad Replacement</td>
<td>5-10</td>
</tr>
<tr>
<td>Boom Chain (For Three Piece Booms)</td>
<td>5-11</td>
</tr>
<tr>
<td>Boom Chain Adjustment</td>
<td>5-11</td>
</tr>
<tr>
<td>Boom Chain Replacement</td>
<td>5-12</td>
</tr>
<tr>
<td>Boom Lift Cylinder</td>
<td>5-18</td>
</tr>
<tr>
<td>Lift Cylinder Pivot Pin Replacement</td>
<td>5-18</td>
</tr>
<tr>
<td>Lift Cylinder Seal Replacement (On Machine)</td>
<td>5-18</td>
</tr>
<tr>
<td>Bench Replacement Of Lift Cylinder Seals</td>
<td>5-19</td>
</tr>
<tr>
<td>Holding Valve Inspection</td>
<td>5-20</td>
</tr>
<tr>
<td>Boom Telescope (Extend) Cylinder</td>
<td>5-21</td>
</tr>
<tr>
<td>Telescope (Extend) Boom Cylinder Pin Replacement</td>
<td>5-21</td>
</tr>
<tr>
<td>Telescope (Extend) Cylinder Removal</td>
<td>5-21</td>
</tr>
<tr>
<td>Telescope Cylinder Seal Replacement</td>
<td>5-22</td>
</tr>
<tr>
<td>Telescope Cylinder Installation</td>
<td>5-22</td>
</tr>
<tr>
<td>Holding Valve Inspection</td>
<td>5-22</td>
</tr>
<tr>
<td>Platform Level Cylinders</td>
<td>5-23</td>
</tr>
<tr>
<td>Platform Level Cylinder Pin Replacement</td>
<td>5-23</td>
</tr>
<tr>
<td>Level Cylinder Seal Replacement</td>
<td>5-23</td>
</tr>
<tr>
<td>Bleeding the Platform Leveling Circuit</td>
<td>5-24</td>
</tr>
</tbody>
</table>
MECHANICAL COMPONENTS

Following is a description of the major mechanical components of the MP.

TIRES

Tires used are calcium filled or the optional foam filled. Inspect tires for cuts, sidewall damage or abnormal wear. Any tire faults MUST BE CORRECTED before further machine operation.

CHANGING TIRES

WARNING

CALCIUM FILLED AND/OR FOAM FILLED TIRES ARE EXTREMELY HEAVY. CARE MUST BE TAKEN TO AVOID PERSONAL INJURY.

When a tire change is necessary, follow these steps:

⚠️ CAUTION ⚠️

ALWAYS BLOCK THE WHEELS before you raise the machine.

- Loosen and remove lug nuts, and pull off the wheel assembly and tire.
- Replace the tire of wheel and tire assembly (if foam filled) and reinstall.
- Fasten lug nuts and tighten to proper torque (see Machine Specifications).
- Lower the machine and remove the blocks.

WHEELS AND LUG NUTS

Front and rear wheels are different and ARE NOT INTERCHANGEABLE. Check the security of the wheel lug nuts (see Machine Specification for proper torque) and examine the wheel rims for damage.

Wheel Assembly and Drive Hub Assembly Location.
DRIVE HUB ASSEMBLY

Drive hub assembly consists of a hydraulic motor and torque hub.

- To remove drive hub assembly:
 1. Block the steer wheels and raise the machine at the drive end.

⚠️ WARNING
CALCIUM FILLED AND/OR FOAM FILLED TIRES ARE EXTREMELY HEAVY. CARE MUST BE TAKEN TO AVOID PERSONAL INJURY.

2. Remove tire and wheel assembly:
 a. Loosen and remove the lug nuts.
 b. Pull off the tire and wheel assembly.

⚠️ CAUTION
Plug all open hydraulic fittings to prevent contamination by dirt or other foreign objects.

3. Disconnect hoses to the drive hub assembly. At this point remove the hose carrier from the axle tube assembly and lay aside the hoses and hose carrier.

4. Loosen and remove eight capscrews and flat washers on the drive hub assembly.

5. Slide off hydraulic motor and torque hub as one unit.

- Install drive hub assembly:
 1. Align the drive hub assembly (hydraulic motor and torque hub) with the axle tube assembly.
 2. Install and torque the eight capscrews with flat washers.
 3. Connect hydraulic hoses to the drive hub assembly and install hose carrier to the axle tube assembly.

⚠️ WARNING
CALCIUM FILLED AND/OR FOAM FILLED TIRES ARE EXTREMELY HEAVY. CARE MUST BE TAKEN TO AVOID PERSONAL INJURY.

4. Install tire and wheel assembly:
 a. Position tire and wheel assembly.
 b. Install and torque lug nuts.

5. Lower the machine and remove the steer wheel blocks.

Undercarriage With Tire and Wheel Assembly, Torque Hub and Drive Motor.
STEEER CYLINDER PINS

Check all pins for wear. If pin rotates, check for a missing retaining ring. If wear is detected, the pin must be replaced.

ROD END CYLINDER PIN REPLACEMENT

1. Remove retaining rings.
2. Remove the pin.
3. Install new pin and retaining rings.
4. Apply grease to pin.

BASE END CYLINDER PIN REPLACEMENT

1. Remove hair pin clips.
2. Remove the pin.
3. Install new pin and hair pin clips.
4. Apply grease to pin.

STEEER CYLINDER

The steer cylinder is of the double acting type. Check the cylinder for hydraulic fluid leaks.

STEEER CYLINDER SEAL REPLACEMENT

1. Disconnect the hydraulic hoses.
2. Remove the steer cylinder pin.
3. Remove the cylinder.
4. Clean the end of the cylinder.
5. Loosen the end cap and withdraw it over the piston rod.

⚠️ CAUTION

Take care not to damage the rod surface and guard against dirt entering the system.

6. Remove the rod and piston assembly.
7. Replace the seals and "o"-rings.
8. Install the rod and piston assembly.
9. Install and tighten the end cap.
10. Connect the hydraulic hoses.
TIE ROD ASSEMBLY

Check for a bent or broken tie rod. Replace if bend or broken.

TIE ROD ASSEMBLY REPLACEMENT

1. Remove capscrews and jam nuts at both ends.
2. Remove tie rod assembly.
3. Install new tie rod assembly and attach it with the capscrews and jam nuts.

Steer Cylinder and Tie Rod Assembly.
SUPERSTRUCTURE

The superstructure consists of two compartments; one is the engine compartment and the other is the hydraulic compartment.

Steam clean the superstructure once a year, and inspect all welds and brackets. Check for cylinder pins that turn in their mountings, which will indicate sheared pin lock bolts.

Components Found on the Superstructure.
BOOM
Clean the boom once a year and inspect along the boom structure, especially all welds and brackets.

PLATFORM
Steam clean the platform and inspect all welds and brackets. Check all the hydraulic and electrical components.

HOSES AND CABLES
Inspect all hoses and electrical cables for security and damage. Check for leaks at fittings. ANY DAMAGED HOSES OR CABLES SHOULD BE REPLACED.

Cables and hoses should be examined for rubbing and chafing, especially in the swing bearing area and the hose track area.

MISCELLANEOUS EQUIPMENT
Check all miscellaneous equipment mounted on the machine for secure attachment. Check for evidence of oil or hydraulic fluid leakage.
BOOM PIVOT PIN AND BUSHING REPLACEMENT

IMPORTANT: It is NECESSARY TO MAINTAIN THE CORRECT ALIGNMENT between the boom and side plates during this operation. Any relative movement will make fitting of the pin bearing more difficult.

1. SUPPORT THE BOOM securely (on a boom stand or similar rigid platform).

2. Remove the retaining ring, and drive out the boom pivot pin, taking care not to damage the inner bore.

3. Check bushing and replace if necessary.

4. Install new pivot pin and retaining ring.

5. Apply grease to pin.

WEAR PADS

Boom sections are protected from wear caused by in and out movement by nylon wear pads mounted at several places along their length. The nylon wear pads should be checked for wear approximately every six months. Fully retract the boom, and check the gap between the wear pad and the boom section.

Wear pads are located at the top front tip of the boom and at the bottom and side rear of the base boom. The telescope cylinder wear pad can not be seen without boom disassembly. Replace this pad after every 5000 hours.

On three piece booms wear pads are also located at the top rear of the base boom, top front of the mid boom, top bottom and side rear of the boom and boom chain anchor.

The telescope cylinder wear pad and the chain anchor wear pad can not be seen without boom disassembly. Replace these pads after every 5000 hours of operation.

⚠️ CAUTION

If a pad wears to approximately 3/8" (9.5 mm) thick, it should be replaced or shimmed. Generally, only the bottom pad at the upper end and the top pad at the lower end of the boom will show wear.
Rear (Upper End) Wear Pad Replacement

1. Fully retract the boom.

2. Remove the bolts, lockwashers and nuts holding the upper and side wear pad.

3. The upper and side wear pads should slide out.

4. Use a crane to hold the boom section off the bottom wear pad.

5. Remove the bottom wear pad.

6. Install new wear pads with bolts, lockwashers and nuts.

Front (Lower End) Wear Pad Replacement

1. Fully retract the boom.

2. Access can now be gained to the front top pad retaining bolts, lockwashers and nuts.

3. Remove bolts, washers and nuts; wear pad will easily fall out.

4. Install new wear pad with bolts, lockwashers and nuts.

Boom Wear Pads (Two Piece Boom)
BOOM CHAIN (FOR THREE PIECE BOOMS)

On three piece booms, the telescope cylinder acts only on the mid boom section and chains are used to extend and retract the tip boom. Two chains extend the tip boom section and keep it from retracting. A third chain retracts the tip boom section and prevents it from extending. All chains are anchored to the rear of the base boom and the front of the tip boom and loop around sheaves on the mid boom section. As the mid boom section is extended or retracted by the telescope cylinder, the chain and sheave arrangement carries the tip boom section with it.

Boom Chain Adjustment

A properly adjusted boom chain should have one inch of droop or sag for every ten feet of boom (60 foot boom should have a 6 inch droop or sag).

To adjust the chain tension, fully extend the boom, and tighten or loosen the chain anchor adjusting bolts located on the base boom section.

⚠️ CAUTION

Maintain equal tension on both chains for proper operation.

Boom Chain and Wear Pads.
Boom Chain Replacement

Chain replacement is recommended after every 5000 hours. Replace the chain anchor wear pad at this time as well.

To disassemble the boom:

NOTE: This procedure requires two people. DO NOT attempt the procedure alone.

1. Retract boom and center between the drive tires.

NOTE: The boom must have room to fully extend and there must be at least 30 feet (9 meters) of drive room in front of the unit. Also there must be room to swing the unit to each side.

2. Disconnect moving anchor and platform from mid and tip boom:

CAUTION
Plug all open hydraulic fittings to prevent contamination by dirt or other foreign objects.

a. Disconnect the two hoses marked "B" from the tee. Plug ends of the hoses and the tee.

b. Then disconnect the two hoses marked "C" from the tee. Plug the ends of the hoses and the tee.

```
TIP BOOM
SLAVE CYLINDER
MOVING ANCHOR
```

"C" HOSE
"C" HOSE
"B" HOSE

Hose Disconnect Locations.

```
Moving Anchor and Tip Boom.
```

c. Remove the hoses from the hose clamp.

d. Detach the slave cylinder from the platform and secure it to the tip boom with a rope.

NOTE: Slave cylinder is secured to the tip boom to prevent damage to the cylinder when pulling the mid and tip boom out of the base boom.

```
SLAVE CYLINDER
PLATFORM PIVOT PIN
```

```
TIP BOOM
```

```
MOVING ANCHOR
```

e. Remove the hex head capscrew and locknut on each side of the platform pivot pin.

f. Pound out the pivot pin; the flange bearing should remain in position.

CAUTION
Support the platform with a stand or similar rigid platform or a crane.

```
Moving Anchor and Tip Boom.
```

g. Support the platform.

h. Release the moving anchor from the tip boom. Remove the capscrew and nut holding the retainer to the moving anchor and the tip boom. Support the moving anchor.

CAUTION
Support the moving anchor with a boom stand or similar rigid platform.
Base Boom Wear Pads.

3. Remove the two chain anchors from the underside of the base boom.

4. Fully extend the boom.

NOTE: The mid boom will extend; however, the tip boom section will not extend.

5. Boom down until the end of the tip boom is resting on the ground. This releases pressure on the wear pads.

6. Remove the wear pads, shims and blocks from the rear bottom of the base boom.

7. Boom up enough so the mid boom almost has clearance from the base boom (the tip boom remains resting on the ground). This releases pressure on the remaining wear pads.

8. Shift boom to the right and remove the base boom left side wear pads. Swing boom to the left and remove the base boom right side wear pads.

9. Remove telescope cylinder pin and retaining ring holding the cylinder to the base boom.

10. Disconnect the hydraulic hoses from the telescope cylinder holding valve.

11. Support the platform with a stand or similar rigid platform or a crane.

TELESCOPIC CYLINDER RETAINING RING HOLDING VALVE CYLINDER PIN BASE BOOM

Base Boom and Telescope Cylinder.

12. Keep the mid boom centered in the base boom. Slowly drive the unit forward. The mid and tip booms remain in position and the machine including the base boom will pull away.

CAUTION

Support the mid and tip boom sections with a forklift or overhead crane of sufficient weight capacity, but not until the mid boom front wear pads approach the end of the base boom. Do not let the mid and tip boom sections drop out of the base boom.
NOTE: When using a forklift, place the forks level to the bottom of the mid boom and the boom to the back of the forks. Raise the forks to just touch the mid boom with only the one fork closest to the platform.

⚠️ CAUTION

Do not lift the mid boom at all or it will pop up with force when it leaves the base boom, which may cause damage to the telescope cylinder and/or the boom.

NOTE: Drive machine forward so there is at least 3 feet (1 meter) of clearance from the mid and tip booms. Keep the telescope (extend) cylinder centered in the base boom.

13. Place mid and tip boom sections on boom supports.

14. Remove chain mounting bracket from base boom.

15. Remove 1 retract and 2 extend chains.
 a. Remove pins holding chains to the anchor and bracket.
 b. Remove master links from the base boom chain block at the tip.
 c. Attach a 1/4 inch rope to each of the two extend chain ends.

NOTE: Be sure the ropes are long enough to allow the chain removal and still be accessible from both ends of the boom.

16. Remove the chain anchor at the bottom front of the tip boom.
 • Pull chain anchor and 3 chains out of the tip boom.

17. Remove front tip boom wear pads and mid boom rear wear pads. Remember to release the pressure on the wear pads.
To assemble the boom, first flip the boom upside down using a crane:

NOTE: Boom is assembled upside down.

1. Lay out the 2 new extend chains and the 1 new retract chain. Refer to Illustrated Parts Catalog for correct chain lengths.

2. Attach chains to tip boom chain anchor block with pins and secure with cotter pins.

3. Replace chain anchor wear pad.

4. Install chain block to tip boom, be sure pin retainer plate is positioned to keep pin in place.

5. Torque caphead mounting bolts and add safety wire to bolts.

6. Replace the upper wear pad at the base of tip boom.

7. Coil chain and place inside tip boom.

8. Clean out mid boom.

9. Insert tip boom into mid boom.

10. Assemble rear of mid boom:
 a. Run single chain around sheave and back to top of mid boom.
 b. Connect chain to base boom chain mounting bracket with pin and cotter pin.
 c. Bolt on anchor wear pad and bracket.

Boom Chains and Wear Pads Replacement (Boom Upside Down).
d. Feed 2 extend chains through opening at rear of mid boom, around sheaves and back over mid boom.

e. Attach chains to chain anchor bolts with pin and cotter pin. Reassemble bolts to chain mounting bracket.

11. Replace wear pad on cylinder.

12. Slide cylinder into boom.

NOTE: When assembling boom upside down, pad faces upward.

13. Mount cylinder to mid boom using cylinder mounting blocks and bolts with lockwashers.

14. Torque bolts.

15. Install bottom wear pad to rear of mid boom.

16. Install side wear pads to rear of mid boom.

17. Using a crane, flip entire boom assembly right side up.

18. Slide mid and tip boom assembly into base boom.

19. Align chain mounting bracket and bolt on to base boom.

20. Install side and bottom wear pads to rear of base boom.
21. Tighten chain anchor adjusting bolts and install a second nut on each take-up.

22. Install top and side wear pads on rear of base boom.

23. Attach cylinder to rear of base boom with pin and snap rings.

24. To install moving anchor:
 a. Slide the moving anchor with platform attached back on the moving anchor guide.
 b. Install moving anchor retainer.
 c. Install cap screw and nut holding the retainer.

25. To install platform:
 a. Align the rotary actuator arm weldments on the tip boom.
 b. Install pivot pin. It will be necessary to pound in the pin. Install the cap screw and lock nut on each side of the pivot pin.
 c. Release the secured slave cylinder and attach it to the platform with a pivot pin, two retaining rings, cap screw and lock nut.
 d. Connect the two hoses marked "C" to the tee.
 e. Connect the two hoses marked "B" to the tee.

26. Bleed the system by cycling the telescope cylinder at least three times.

27. Test boom operation.

28. Adjust chains (see Boom Chain Adjustments).

Tip Boom and Moving Anchor.
BOOM LIFT CYLINDER

The boom lift cylinder is of the double acting type. During operation, the cylinder should not leak, but a slight dampness at the rod seal is acceptable. The pins should be checked for wear. Check the pin locking bolts for tightness. The cylinder and holding valve should be inspected for fluid leakage, damage and security.

LIFT CYLINDER PIVOT PIN REPLACEMENT

1. Support the boom securely (on a boom stand or similar rigid platform).

2. Operate the boom lift control to release hydraulic pressure and remove any load on the lift cylinder.

3. Remove the retaining ring.

4. Remove the pin locking bolts and nuts.

5. SUPPORT THE LIFT CYLINDER and remove the pin.

6. Install new pin and locking bolts and nuts (lubricate bolts before installation) and retaining ring.

7. Apply grease to pin.

LIFT CYLINDER SEAL REPLACEMENT (ON MACHINE)

1. Support the boom securely (on a boom stand or similar rigid platform).

2. Operate the boom lift control to release hydraulic pressure and remove any load in the lift cylinder circuit.

3. Clean the end of the cylinder, and loosen the cylinder end cap by several turns.

4. Remove the rod end pivot pin, and support the cylinder barrel.

5. Loosen the end cap completely, and withdraw it carefully over the piston rod.

⚠️ CAUTION

Take care not to damage the rod surface and guard against dirt entering the system.

6. Remove the rod and piston assembly.
7. Replace the seals and backup rings.

8. Reassemble the lift cylinder, again AVOIDING DIRT AND ROD DAMAGE.

9. Tighten the end cap.

10. Install rod end pin.

Bench Replacement of Lift Cylinder Seals

The lift cylinder can also be removed from the machine for seal replacement.

1. Operate boom lift to horizontal position.

2. SUPPORT THE BOOM (on a boom stand or similar rigid platform) at the horizontal position.

3. Disconnect the hydraulic hoses from the cylinder.

4. Support the cylinder with a crane.

5. Remove the rod end cylinder pin.

⚠️ **CAUTION**

The cylinder will fall if not supported when the rod end pin is removed.

6. With the cylinder supported, remove the base end cylinder pin.

7. Move the cylinder to a bench for examination.

8. Extend the cylinder, and examine the protruding rod for score marks and damage.

9. Clean the holding valve and examine for signs of leakage.

10. Clean the end of the cylinder.

"O"-RING

HOLDING VALVE

ROD

SEAL

BUSHING

PISTON

"O"-RING

SEAL

BUSHING

BACKUP WASHER

Lift Cylinder.

11. Loosen the end cap, and withdraw it carefully over the piston rod.

⚠️ **CAUTION**

Take care not to damage the rod surface and guard against dirt entering the system.

12. Remove the rod and piston assembly.

NOTE: It is recommended that the backup rings be replaced when seals are changed.

13. Replace the seals and backup rings and assemble the cylinder; AVOIDING DIRT AND ROD DAMAGE.
14. Tighten the end cap.

15. Install the base end of the cylinder on the machine.

16. Connect all the hydraulic hoses.

17. Extend the lift cylinder and install the rod end to the boom.

18. Remove cylinder support.

19. Remove boom support.

20. BLEED THE SYSTEM after reinstalling the cylinder.

HOLDING VALVE INSPECTION

1. Stop the engine, and activate the boom lift control lever several times to dissipate residual pressure.

2. If the cylinder subsequently begins to move, the holding valve is faulty and the cartridge should be replaced.

NOTE: The holding valve is pre-set at the factory and is not adjustable.
BOOM TELESCOPE (EXTEND) CYLINDER

The function of the telescope (extend) cylinder is to extend and retract the boom segments to allow positioning of the work platform. The double acting cylinder must be removed from the machine before a thorough inspection can be carried out.

TELESCOPE (EXTEND) CYLINDER REMOVAL

1. Elevate the boom to the horizontal position.
2. SUPPORT THE BOOM (on a boom stand or similar rigid platform).
3. Disconnect the hydraulic hoses from the cylinder.
4. Remove the retaining ring and pin from the base end of the cylinder.
5. Remove the mounting block bolts (only on three section boom).
6. Using a crane, withdraw the cylinder from the boom.

Telescope Cylinder Pin (Two Section Boom).

TELESCOPE (EXTEND) BOOM CYLINDER PIN REPLACEMENT

1. Remove the retaining ring.
2. SUPPORT THE CYLINDER and remove the base end pin.
3. Install new pin and retaining ring. Cylinder must be lined up for ease of installation.

Telescope Cylinder Pin (Three Section Boom).

Telescope (Extend) Cylinder Replacement for Two Section Boom.
TELESCOPE CYLINDER SEAL REPLACEMENT

1. Remove the end cap from the cylinder.
2. Pull the cap and rod straight out of the cylinder barrel.
3. Remove the nut from the end of the rod.
4. Slip off the collar.
5. Examine the rod and seals for signs of damage or wear.
6. Remove the old seals and backup rings.
7. Install new seals and backup rings.

TELESCOPE CYLINDER INSTALLATION

1. SUPPORT THE BOOM (on a boom stand or similar rigid platform) IN THE HORIZONTAL POSITION.
2. Using a crane, slide the telescope cylinder into the boom.
3. Install the mounting block bolts (on three section boom), cylinder pin retaining ring and hoses.
4. BLEED THE SYSTEM after reinstalling the cylinder.

HOLDING VALVE INSPECTION

1. Stop the engine, and activate the telescope control lever several times to dissipate residual pressure.
2. If the cylinder subsequently begins to move, the holding valve is faulty and the cartridge should be replaced.

NOTE: The holding valve is pre-set at the factory and is not adjustable.
PLATFORM LEVEL CYLINDERS

The platform level system automatically keeps the platform level, using a master/slide cylinder arrangement. As the boom is raised or lowered, fluid is forced from one cylinder to the other in a closed loop, which keeps the platform parallel to the ground in any boom position. The platform level cylinders (master and slave) are of the double acting type.

1. Check pivot pins for wear.
2. Check the pivot pin locking bolts for tightness.
3. Inspect the cylinders for fluid leakage, damage and security.
4. Replace the seals whenever the cylinder is serviced.

PLATFORM LEVEL CYLINDER PIN REPLACEMENT

1. SUPPORT THE PLATFORM to remove the load on both master and slave leveling cylinders.
2. Remove the retaining ring, the pin locking bolts and nuts, and remove the pin.
3. Install new pin, locking bolts and nuts (lubricate bolts before installation) and retaining ring.
4. Apply grease to pin.

LEVEL CYLINDER SEAL REPLACEMENT

1. Lower the boom all the way.
2. SUPPORT THE PLATFORM to remove the load on both master and slave leveling cylinders.
3. Remove the lock collar and pin. Slave cylinder seals can be replaced on the machine. Master cylinder must be removed for seal replacement.
4. Clean the end of the cylinder.
5. Unscrew the end cap and pull the cap and rod straight out of the cylinder barrel.

CAUTION

Take care not to damage the rod surface, and guard against dirt entering the system.
Slave Level Cylinder.

6. Remove the split pin and nut from the end of the rod.

7. Slip off the collar.

8. Examine the rod and seals for signs of damage or wear.

9. Remove the old seals and install a new seal kit.

BLEEDING THE PLATFORM LEVELING CIRCUIT

After a platform level cylinder has been repaired or replaced, or if the platform does not remain level with the raising and lowering of the boom, the platform leveling circuit may need to be bled.

NOTE: Assistance is required in order to perform the bleeding procedure. One person is needed to operate the platform level control, while the second person bleeds the system.

1. With boom retracted, check the hydraulic fluid level in the tank.

2. Slightly loosen the B and C hose fittings at the base of the master leveling cylinder.

3. With the platform near ground, operate the platform level control to move the platform fully backward and forward. Perform procedure five (5) times in order to expel any air from the system.

WARNING

CARE MUST BE TAKEN WHEN OPERATING LEVEL CONTROL. AIR IN CYLINDERS CAN CAUSE UNCONTROLLED PLATFORM MOTION.

4. Tighten the B and C hose fittings and top off the hydraulic tank.

5. Repeat the procedure as required until all air is expelled.

6. After bleeding the leveling circuit, raise boom to full elevation and then fully lower boom to ensure that platform remains level.

7. Check platform level control lever for proper operation.

WARNING

HYDRAULIC FLUID WILL BE FORCIBLY EJECTED FROM B AND C FITTINGS. LOosen NIPPLE SLOWLY.
SECTION 6: MAINTENANCE SCHEDULE
Table of Contents, Section 6

Maintenance Schedule .. 6-3
General Maintenance Tips .. 6-3
First Three Months of Operation 6-3
Routine Servicing .. 6-3
 Shift Service .. 6-4
 Monthly Service .. 6-4
 Semi-Annual Service ... 6-5
 Annual Service ... 6-5
Four Year Interval Service .. 6-5
Shift Operational Checklist ... 6-6
Monthly Operational Checklist 6-9
Semi-Annual Operational Checklist 6-11
MAINTENANCE SCHEDULE

The Simon MP with Full Pressure Hydraulic control system is designed to require a minimum amount of maintenance. However, it is essential that the specified services be performed at the indicated intervals, and that the instructions contained in this manual are followed to ensure safety and reliability.

⚠️ DANGER

DEATH OR SERIOUS INJURY MAY RESULT IF MACHINE IS OPERATED IN AN UNSAFE CONDITION. DO NOT OPERATE ANY MACHINE IF IN UNSAFE OPERATING CONDITION.

GENERAL MAINTENANCE TIPS

- ALWAYS clean the surrounding area before opening hydraulic components.
- Never open a hydraulic system when there are contaminants in the air.
- Never leave components or hoses open. They must be protected from contamination (including rain) at all times.
- Use only recommended lubricants (see Lubrication Chart in front of this manual). Improper lubricants or incompatible lubricants may be as harmful as no lubrication.
- Watch for makeshift "fixes", which can jeopardize safety as well as lead to more costly repairs.
- Any work platform found not to be in safe operating condition should be removed from service until repaired. All repairs should be made by authorized personnel in conformance with the manufacturer's operating, maintenance, and repair manuals.

FIRST THREE MONTHS OF OPERATION

As with any new machine, minor fluid leaks may occur until the various hydraulic components and pipe fittings are fully seated.

It is particularly important that, for the first three months of operation, all hydraulic components, hoses and pipe fittings be checked regularly for leaks and tightness, and corrective action taken as required.

Correction of minor fluid leaks and general tightening of machine components during this initial period are not considered as reimbursable expenses under the Simon Limited Warranty.

The hydraulic pump, electric motor, cylinders and pressure valves are self-lubricating.

ROUTINE SERVICING

NOTE: The following recommendations are based on advice of suppliers, and the requirements of various safety regulations. They should be followed with discretion based on factors such as amount and type of machine usage, environmental conditions, and local safety regulations.

IMPORTANT: Make certain that the unit is inspected per the operational checklists at the end of this section.
SHIFT SERVICE

Hydraulic System

Before checking the hydraulic fluid level, ensure that the machine booms are stowed in the traveling position, and the machine is standing on level ground. Fluid level must be to full mark on sight gauge, located on the side of tank. Refer to Lubrication Chart for correct grade of hydraulic fluid.

Ensure that the filler cap is secure to prevent entry of water or other impurities into the tank.

Tire Condition

Check that the tires are not damaged and the tires have the correct tire pressure (not foam filled).

Platform Rails and Safety Gate

Check security of platform and safety gate.

Control Valves

Control valves must be checked for correct operation. Check that all control valve handles automatically return to the center (neutral) position.

Steering

Check the steer cylinder for fluid leakage. Inspect steering linkage for signs of wear.

Batteries

Check the electrolyte level in battery cells. Replenish with distilled water, if necessary.

Pivot Pins

Examine all pivot pins on booms and cylinders to ensure that they are positively secured in position.

Test All Machine Systems

Test the operation of the drive assembly, including drive motors and steering.

Test the operation of all machine boom functions.

Checklist

Perform all items on the Shift Checklist found later in this section.

MONTHLY SERVICE

Hydraulic System

Pressurize the hydraulic circuit and inspect the system for any signs of leakage, particularly at flexible hoses, connections and hydraulic components.

Check hydraulic fluid color. If the hydraulic fluid does not appear clear amber, but has a cloudy appearance, it is usually an indication that water is present. A dark brown color, accompanied by a strong "burnt" smell, indicates that the fluid has overheated. If either condition occurs, a complete hydraulic fluid and filter change will be necessary.

The cause of hydraulic fluid deterioration should be investigated and rectified. Have fluid analyzed by a qualified laboratory.

Chassis Bolts

Check all bolts for signs of looseness.

Cylinders

Check all cylinders for hydraulic fluid leakage.

Pivot Pins and Grease Fittings

Lubricate all pivot pins and grease fittings.
Platform Mounting

Check that platform weldments and platform frame members are in good condition.

Checklist

Perform all items on the Monthly Checklist found later in this section.

SEMI-ANNUAL SERVICE

Boom Cylinders

Fully raise, then lower the boom lift cylinder. At each extreme position, check that there is no movement between cylinder rod and bearing housing, or between cylinder cap and tube.

Fully retract, then extend the boom telescope cylinder. At each extreme position, check that there is no movement of the cylinder pin.

High Pressure Filter

Change the high pressure filter element.

In severe use applications, more frequent filter changes will be necessary.

Checklist

Perform all items on the Semi-Annual Checklist found later in this section.

ANNUAL SERVICE

Flexible Hoses

Inspect all hoses over their complete length. Replace any hoses showing looseness or corrosion at the end fittings. Replace hoses exhibiting cracking, blistering or excessive wear of outer protective covering.

Hydraulic Fluid

If the hydraulic system has been properly maintained, the fluid should only need to be changed once each year. This, of course, will depend on machine application, amount of use, temperature, atmospheric conditions and other factors.

Hydraulic Fluid Tank

Carefully check the condition of the fluid inside the tank to ensure that it flows easily and is of clear, amber color. In cases of gross contamination, it will be necessary to completely drain and refill the entire hydraulic system.

Place a suitable waste oil container under the drain tap, or attach a suitable hose from the drain tap to the container.

Open the drain tap, and completely drain the fluid from the tank.

Clean or replace the suction hose, and close the drain tap. Refill the tank to the correct level.

Structural Examination

A thorough examination of the machine should be carried out for signs of corrosion, misalignment, material fractures, and other damage. Particular attention should be given to the condition of welded joints.

FOUR YEAR INTERVAL SERVICE

Pivot Pins and Bearings

Remove the pivot pins for examination. Check the pivot pin bearings with the pivot pins removed. Replace with the correct type of pins and bearings, as necessary.
SHIFT OPERATIONAL CHECKLIST

All checks must be completed before operating the unit.

These checklists can be copied as needed to aid in performing these inspections.

DATE: ___________________ INSPECTED BY: ___________________

MODEL NUMBER: ___________ SERIAL NUMBER: ________________

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.

Keep your Simon machine clean!!

⚠️WARNING

THIS CHECKLIST MUST BE USED AT DAILY INTERVALS OR AFTER EVERY 6 TO 8 HOURS OF USE, WHICHEVER IS SOONER. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>1. Perform a visual inspection of all machine components, i.e. missing parts, torn or loose hoses, hydraulic fluid leaks, torn or disconnected wires, etc. Open both compartment doors to inspect components inside.</td>
</tr>
<tr>
<td>_______</td>
<td>2. Check battery electrolyte level and connections.</td>
</tr>
<tr>
<td>_______</td>
<td>3. Check fuel, engine oil and coolant levels.</td>
</tr>
<tr>
<td>_______</td>
<td>4. Check hydraulic fluid level. The level should be at the line marked on the sight gauge with the unit in stowed position.</td>
</tr>
<tr>
<td>_______</td>
<td>5. Check that all shutoff valves on hydraulic tank are open (parallel to flow).</td>
</tr>
<tr>
<td>_______</td>
<td>6. Check tires for damage.</td>
</tr>
<tr>
<td>_______</td>
<td>7. Check tires for proper pressure (see Machine Specifications). Not applicable for foam filled tires.</td>
</tr>
</tbody>
</table>
8. Check drive and steer wheel lug nuts for proper torque (see Machine Specifications).

9. Check hoses for worn areas.

10. Check hose carrier to verify that it is not bent or sagging.

11. Inspect safety belt connections. Check for worn areas on the belts.

12. Check platform and gate latch for damage.

13. Check pivot pins for security.

14. Check that all warning and instructional labels are legible and secure.

15. Start engine. Check that hydraulic pressure is as stated in machine specifications.

16. Check that the tilt alarm is working properly.

17. Check that no attempt has been made to override the drive interlock system.

18. Perform all pre-inspection checks before any ground and platform tests.

19. Test ground controls for proper operation.

20. Check platform controls for proper operation.

21. With the platform raised, check for smooth operation of low speed drive.

22. Check emergency pump and descent valves (if so equipped) for proper operation.

23. Follow engine daily service requirements. Refer to the Engine Maintenance Manual supplied with your machine.

Continued on following page . . .
SHIFT OPERATIONAL CHECKLIST (CONTINUED)

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

NOTE: Do not lubricate wear pads or chains in dusty or sandblast environments. There are boots and guards available to extend unit life in these applications. Consult Simon Aerials Service Department.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>24. Inspect cylinder boots, valve spool boots, etc., for cuts or other damage after every 8 hours of service. Repair or replace if necessary.</td>
</tr>
<tr>
<td>_______</td>
<td>25. Check hydraulic system for leakage after every 8 hours of operation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WEEKLY INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>27. Inspect condition of hydraulic fluid in the reservoir. Fluid should have a clear amber color.</td>
</tr>
<tr>
<td>_______</td>
<td>28. Lubricate all grease fittings (see Lubrication Chart).</td>
</tr>
<tr>
<td>_______</td>
<td>29. Check oil level in swing drive gear box (see Lubrication Chart).</td>
</tr>
<tr>
<td>_______</td>
<td>30. Check oil level in power hubs (see Lubrication Chart).</td>
</tr>
<tr>
<td>_______</td>
<td>31. Apply lubricant to standard open swing bearing and drive pinion gear (see Lubrication Chart). Check lubricant in optional oil bath swing bearing case, if so equipped, for proper level and check for dirt or metal contamination (see Lubrication Chart). Change if contaminated.</td>
</tr>
</tbody>
</table>
MONTHLY OPERATIONAL CHECKLIST

DATE: ______________________ INSPECTED BY: ______________________

MODEL NUMBER: _____________ SERIAL NUMBER: _________________

These checklists can be copied as needed to aid in performing these inspections.

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected. Keep your Simon machine clean!!

⚠️ WARNING

THIS CHECKLIST MUST BE USED AT MONTHLY INTERVALS OR EVERY 100 HOURS, WHICHEVER OCCURS FIRST. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>1. Perform all checks listed on Shift Operational Checklist.</td>
</tr>
<tr>
<td>_______</td>
<td>2. Lubricate all grease fittings (see Lubrication Chart).</td>
</tr>
</tbody>
</table>
| _______ | 3. Apply lubricant to standard open swing bearing and drive pinion gear (see Lubrication Chart).
 Check lubricant in optional oil bath swing bearing case, if so equipped, for proper level and check for dirt or metal contamination (see Lubrication Chart). Change if contaminated. |
| _______ | 4. Inspect condition of hydraulic fluid in the reservoir. Fluid should have a clear amber color. |
| _______ | 5. Check hydraulic system for leaks, examine hoses for signs of excessive wear, chafing or twisting. Adjust the hoses and/or replace them if necessary. |
| _______ | 6. Inspect the work platform and boom structure for signs of damage and broken welds. Check all bolts (including cab rotate bolts) for tightness. |
| _______ | 7. Clean and lubricate all valve spool linkages. |

Continued on following page . . .
<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8. Check for unit damage, broken welds, loose bolts, improper or make-shift repairs.</td>
</tr>
<tr>
<td></td>
<td>9. Check protective rubber cover around hoses at moving anchor, tip boom, boom hose passages, and at swing bearing.</td>
</tr>
<tr>
<td></td>
<td>10. Check torque of swing bearing bolts (see "Machine Specifications").</td>
</tr>
<tr>
<td></td>
<td>11. Check adjustment and security of swing drive. Check torque of swing drive mounting bolts (see "Machine Specifications"). There should be a slight amount of backlash between the superstructure and undercarriage when properly adjusted.</td>
</tr>
<tr>
<td></td>
<td>12. Check oil level in swing drive gear box (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>13. Check oil level in power hubs (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>14. Check that tires are not leaning in or out.</td>
</tr>
<tr>
<td></td>
<td>15. Check that wheel spindles turn freely, with no end play.</td>
</tr>
<tr>
<td></td>
<td>16. Check drive wheel power hub mounting bolt torque (see "Machine Specifications").</td>
</tr>
<tr>
<td></td>
<td>17. Check wheel lug nut torque (see "Machine Specifications").</td>
</tr>
<tr>
<td></td>
<td>18. Check that the boom does not drift with a full load, no hydraulic pressure (engine off) and the platform control valve in the "BOOM DOWN" position.</td>
</tr>
<tr>
<td></td>
<td>19. Inspect boom cables. Lubricate as required (see Lubrication Chart).</td>
</tr>
<tr>
<td></td>
<td>20. Check to make sure boom sections are not dented or bent.</td>
</tr>
<tr>
<td></td>
<td>21. Check that all adjustable flow valves are locked. Check settings if any are not locked.</td>
</tr>
<tr>
<td></td>
<td>22. Check fuel shutoff rack for proper operation. Loosen lever arm and lubricate with WD-40 or equivalent.</td>
</tr>
<tr>
<td></td>
<td>23. Follow engine monthly service requirements. Refer to the Engine Maintenance Manual supplied with your machine.</td>
</tr>
</tbody>
</table>

ADDITIONAL MAINTENANCE REQUIREMENTS FOR SEVERE USAGE APPLICATIONS

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24. Replace high pressure filter element.</td>
</tr>
</tbody>
</table>
SEMI-ANNUAL OPERATIONAL CHECKLIST

DATE: ________________ **INSPECTED BY:** ________________

MODEL NUMBER: ________________ **SERIAL NUMBER:** ________________

These checklists can be copied as needed to aid in performing these inspections.

GENERAL INFORMATION

1. Keep inspection records up-to-date.
2. Record and report all discrepancies to your supervisor.
3. A dirty machine cannot be properly inspected.
 Keep your Simon machine clean!!

WARNING

THIS CHECKLIST MUST BE USED AT SIX MONTH INTERVALS OR EVERY 500 HOURS, WHICHEVER IS SOONER. FAILURE TO DO SO COULD ENDANGER THE LIFE OF THE OPERATOR. ALWAYS REMEMBER, A LITTLE PREVENTIVE MAINTENANCE CAN SAVE MUCH MORE THAN IT COSTS.

<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>________</td>
<td>1. Perform all checks listed on Shift and Monthly Operational Checklists.</td>
</tr>
<tr>
<td>________</td>
<td>2. Have hydraulic fluid sample analyzed at a test laboratory. Comply with test results and recommendations to ensure long, trouble free operation.</td>
</tr>
<tr>
<td>________</td>
<td>NOTE: If hydraulic fluid has been regularly maintained, it should only require changing once every year, depending on maintenance, temperature, application, duty cycle, and atmospheric conditions.</td>
</tr>
<tr>
<td>________</td>
<td>3. Clean and lubricate all electrical switches with an electrical contact cleaner and ensure that the switches operate freely in all positions.</td>
</tr>
<tr>
<td>________</td>
<td>4. Check the electrical mounting and hardware connections for security.</td>
</tr>
<tr>
<td>________</td>
<td>5. Replace high pressure filter element.</td>
</tr>
<tr>
<td>________</td>
<td>6. Drain and replace fluid from swing drive and power hubs. If badly contaminated, it may be necessary to disassemble and inspect components.</td>
</tr>
</tbody>
</table>

Continued on following page...
<table>
<thead>
<tr>
<th>INITIAL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7. Lubricate all hydraulic valve spool linkages.</td>
</tr>
<tr>
<td></td>
<td>8. Clean and lubricate the standard open swing bearing gear teeth with dry moly lube spray (not required for oil bath swing bearing).</td>
</tr>
<tr>
<td></td>
<td>9. Repack front wheel bearings.</td>
</tr>
</tbody>
</table>
SECTION 7: TROUBLESHOOTING
Table of Contents, Section 7

General Troubleshooting Tips ... 7-3
Troubleshooting Chart .. 7-4

Troubleshooting Chart Index

B
Boom trac cross braces breaking 7-5
Boom trac sagging ... 7-6

C
Cavitation, a gaseous condition 7-5

D
Drive function does not operate 7-7

E
Engine won't crank .. 7-6
Excessive heat will cause excessive wear on seals 7-4

L
Lift (hoist) cylinder drifts down 7-7

M
Movement alarm will not sound 7-6

N
No drive function .. 7-8
No extend or retract function ... 7-10
No lift (hoist) function .. 7-8
No steer function .. 7-8
No swing function ... 7-11

P
Poor lubrication, parts broken ... 7-4

T
Telescope, swing, hoist functions don't operate 7-7
Throttle actuator doesn't work 7-6

V
Varnish, the dark brownish residue left 7-4

W
Water in hydraulic fluid .. 7-4
GENERAL TROUBLESHOOTING TIPS

Before investigating a malfunction, check the following items:

- The Main Power Key Switch should be in the "GROUND" or "PLATFORM" position.
- The Foot Pedal Switch is pressed and held for platform console operation.
- Pump toggle is pressed and held for ground control operation.
- Check that battery connections are secure and battery is fully charged.
- Check that the Emergency Stop Buttons are released.
- Check that the ball valve in pump supply line is open.
- Check that hydraulic fluid is at the correct level.

Common Causes of Hydraulic System Malfunctions:

- Incompatible hydraulic fluids mixed, destroying the additives and causing varnish build up resulting in the valves to stick.
- Water in the hydraulic fluid due to a damp climate and loss of reservoir pressurization.
- Improper hydraulic fluid used; viscosity too high in cold climates, viscosity too low in warm climates.

NOTE: Mobil DTE-13M is a multiple viscosity oil that is light enough for cold climates and resists thinning in warm climates.

- Fuel in the hydraulic fluid, which lowers the viscosity and lubricity of the fluid.
<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Excessive heat will cause excessive wear on seals and metal parts due to lowered viscosity. Symptoms to watch for are: pump case turns brown, hydraulic fluid darkens and premature pump failure. | • Excessive water in the hydraulic fluid.
• Improper oil viscosity.
• Improper lubrication and hydraulic fluid.
• Pump cam bearing failure.
• Open pump stroke valve.
• Foot pedal blocked. | • Drain and flush hydraulic system.
• Replace hydraulic fluid with the correct fluid.
• Drain and flush hydraulic system.
• Rebuild pump as required.
• Close pump stroke valve.
• Unblock foot pedal. |
| Water in hydraulic fluid. Symptoms to watch for are: pitting and etching of pump pistons with pump piston cam wear causing heat build up and premature pump failure. | • Damp climate.
• Hydraulic fitting or port open to contaminants.
• Loss of reservoir pressurization. | • Drain and flush hydraulic system.
• Drain and flush hydraulic system. Replace worn pump components.
• Check pressure. |
| Varnish, the dark brownish residue left from oxidation of hydraulic fluids. Symptoms to watch for are: residue will cause pistons and spools to stick and will hang up moving parts with close tolerances. | • Incompatible fluids or poor quality fluids.
• Excessive heating of the fluids. | • Drain and flush hydraulic system, then fill with recommended hydraulic fluid and lubricant.
• Drain and flush hydraulic system, then fill with recommended hydraulic fluid. |
| Poor lubrication, parts break through lubricant causing metal to metal contact. Symptoms to watch for are: heads of pump pistons worn to shape of cam and excessive heat build up. | • Hydraulic fluid viscosity low.
• Improper or poor grade hydraulic fluid or lubricant without proper anti-wear additives. | • Drain and flush hydraulic system, then fill with recommended hydraulic fluid.
• Drain and flush hydraulic system, then fill with recommended hydraulic fluid and lubricant. |
TROUBLESHOOTING CHART (CONTINUED)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| • Cavitation, a gaseous condition within the fluid stream where the pressure is reduced to the vapor pressure of the fluid. The higher the system pressure the more violent the reaction will be. Symptoms to watch for are: pitting and etching of pump pistons. | • Low reservoir fluid level.
• Air leaks in suction line.
• Improper hydraulic fluid.
• Vaporization of water.
• Hydraulic fluid system has not been warmed before using full system pressure.
• Pump speed too high. | • Add hydraulic fluid.
• Repair any suction hose leaks.
• Have fluid analyzed regularly and drain and flush hydraulic system, then fill with recommended hydraulic fluid.
• Have fluid analyzed regularly and drain and flush hydraulic system, then fill with recommended hydraulic fluid.
• Warm up system before using full system pressure.
• Ensure reservoir pressurization is operating properly and adjust engine speed. |
| • Boom track cross braces breaking. | • Hoses wearing in the boom track.
• System pressure too high, causing boom hoses to expand more than normal.
• Hoses too tight in the track. | • Check hydraulic pressure and adjust if necessary.
• Check hydraulic pressure and adjust if necessary.
• Adjust hose tension. |
Troubleshooting Chart (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom track sagging.</td>
<td>Track pin holes stretched.</td>
<td>Check track supports, and replace if necessary.</td>
</tr>
<tr>
<td></td>
<td>Overhead guard is damaged. If the guard is damaged, the track could get</td>
<td>Replace overhead guard and any other items damaged due to a damaged guard.</td>
</tr>
<tr>
<td></td>
<td>caught and could also tear off the moving anchor.</td>
<td>Follow proper lubrication and cleaning procedures.</td>
</tr>
<tr>
<td></td>
<td>Improper lubrication and cleaning.</td>
<td></td>
</tr>
<tr>
<td>Engine won't crank.</td>
<td>Starter motor relay (SR1), starter motor interlock relay (CR1), low oil</td>
<td>A breakdown in any one of these components will cause the engine not to</td>
</tr>
<tr>
<td></td>
<td>pressure/ high water temperature/ time delay relay (CR10), Power relay</td>
<td>crank. Trace the available voltage to starter motor relay (SR1). Replace</td>
</tr>
<tr>
<td></td>
<td>(CR3), ground/ platform switch (TGS2), oil pressure relay (CRO), ground</td>
<td>the component(s) that are bad.</td>
</tr>
<tr>
<td></td>
<td>toggle, platform ignition and start (TGS4) is bad or an engine failure.</td>
<td></td>
</tr>
<tr>
<td>Throttle actuator doesn't</td>
<td>Throttle high speed relay (CRHS), throttle low speed relay (CRLS), circuit</td>
<td>A breakdown in any one of these components will cause the actuator not to</td>
</tr>
<tr>
<td>work.</td>
<td>breaker 4 (CB4), or circuit breaker 2 (CB2) is bad or a motor failure.</td>
<td>function. Trace the available voltage to the throttle motor. Replace the</td>
</tr>
<tr>
<td>Movement alarm will not</td>
<td>Movement alarm relay (CRM), power relay (CR3), horn or switch card on drive</td>
<td>component(s) that are bad.</td>
</tr>
<tr>
<td>sound.</td>
<td>handle is bad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Chart (continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lift (hoist) cylinder drifts down.</td>
<td>1. Holding valve cartridge dirty or faulty.</td>
<td>1. Clean, repair or replace the holding valve.</td>
</tr>
<tr>
<td></td>
<td>2. Cylinder packing is damaged.</td>
<td>2. Replace cylinder packing.</td>
</tr>
<tr>
<td>Ground Control (Pendant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Drive function does not operate.</td>
<td>1. Toggle switch has no voltage.</td>
<td>1. Check voltage available to the toggle switches.</td>
</tr>
<tr>
<td></td>
<td>2. Directional valves not shifting</td>
<td>2. Check that low speed directional valves shifts during drive.</td>
</tr>
<tr>
<td></td>
<td>3. Ground drive speed control relay (CRCG) is bad.</td>
<td>3. Ensure proper operation of ground drive speed control relay (CRCG) or replace.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ground Control (Pendant) (Cont.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No steer function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Steer toggle switch is bad.</td>
<td>1. Check voltage available to the toggle switch.</td>
</tr>
<tr>
<td></td>
<td>2. Pilot operated check valve.</td>
<td>2. Pilot operated check valve is dirty. Remove, clean and/ or replace.</td>
</tr>
<tr>
<td></td>
<td>3. Faulty steer cylinder.</td>
<td>3. Possibly plugged steer ports or damaged cylinder packing. Inspect, repair or replace steer cylinder.</td>
</tr>
<tr>
<td>Platform Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No drive function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Platform drive speed control relay (CRC), drive potentiometer is bad.</td>
<td>1. Ensure platform drive speed control relay (CRC) is working properly. If boom is extended, confirm potentiometer is functioning. Repair or replace both components.</td>
</tr>
<tr>
<td></td>
<td>2. Directional valves not shifting</td>
<td>2. Check that low speed/high speed directional valves shift during drive.</td>
</tr>
<tr>
<td></td>
<td>3. Brakes do not release.</td>
<td>3. Check pressure supply to brakes. If no pressure, consult factory.</td>
</tr>
<tr>
<td>Problem</td>
<td>Probable Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Platform Control (Cont.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No drive function (cont-inued).</td>
<td>5. No hydraulic fluid flow available to the drive motors.</td>
<td>5. Test for available fluid flow at the wheel motors.</td>
</tr>
<tr>
<td></td>
<td>6. Diverter valve not fully shifted.</td>
<td>6. Inspect, repair or replace.</td>
</tr>
<tr>
<td></td>
<td>7. Motor shafts are sheared.</td>
<td>7. Inspect, repair or replace.</td>
</tr>
<tr>
<td></td>
<td>8. Torque hubs are damaged.</td>
<td>8. Inspect, repair or replace.</td>
</tr>
<tr>
<td></td>
<td>9. Drive valve spool is stuck.</td>
<td>9. Manually engage and check for proper operation. Replace if faulty.</td>
</tr>
<tr>
<td>• No lift function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Drive enable valve energized.</td>
<td>1. Check drive enable valve.</td>
</tr>
<tr>
<td></td>
<td>2. Platform boom and swing speed control relay (CRS) and boom potentiometer not functioning properly.</td>
<td>2. Ensure platform boom and swing speed control relay (CRS) is operating properly. Adjust boom potentiometer or replace faulty parts.</td>
</tr>
<tr>
<td></td>
<td>3. Lift spool valve stack.</td>
<td>3. Manually engage lift spool and check for operation.</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING CHART (CONTINUED)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform Control (Cont.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• No lift function (continued.)</td>
<td>6. Holding valves not operating properly.</td>
<td>6. Remove, clean, inspect, replace and test unit operation.</td>
</tr>
<tr>
<td></td>
<td>7. Faulty cylinder.</td>
<td>7. Possibly plugged lines, cylinder ports or damaged cylinder packings. Inspect, repair or replace cylinder.</td>
</tr>
<tr>
<td>• No extend or retract function.</td>
<td>1. Spool valve stuck.</td>
<td>1. Manually engage spool and check for proper operation. Replace if faulty.</td>
</tr>
</tbody>
</table>
Troubleshooting Chart (Continued)

<table>
<thead>
<tr>
<th>Problem</th>
<th>Probable Cause</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Platform Control (Cont.) | 1. Platform boom and swing speed control relay (CRS) and swing potentiometer not functioning properly.
2. Spool valve stuck.
3. Brake on swing box not releasing. | 1. Ensure proper operation of platform boom and swing speed control relay (CRS) and adjust swing potentiometer or replace it.
2. Manually engage swing spool and check for proper operation. Replace if faulty.
3. Check for proper pressure to release brake. Adjust pressure. |
Index

B
- Battery .. 4-3
- Battery Maintenance (In Storage) 4-3
- Battery Maintenance (In Use) 4-3
- Battery Preventive Maintenance 4-4
- Battery Replacement 4-4
- Boom ... 5-8
- Boom Chain (For Three Piece Booms) 6-11
- Boom Chain Adjustment 5-11
- Boom Chain Replacement 5-12
- Boom Component Locator xviii
- Boom Lift System 2-15
- Boom Pivot Pin and Bushing Replacement 5-9

C
- Checklist, Monthly Operational 6-9
- Checklist, Semi-Annual Operational 6-11
- Checklist, Shift Operational 6-6
- Circuit Breakers 4-5

D
- Drive Control Handle 3-5
- Drive Hub Assembly 5-4
- Drive Motor and Brake Assembly 3-3
- Drive System Components 3-3

E
- Electrical System 4-3
- Emergency Electrical Pump 1-6
- Emergency Lowering 1-7
- Emergency Pump 2-13, 4-5
- Emergency Pump Adjustment 2-13
- Emergency Stop Button 4-6
- Emergency System and Procedures 1-6

G
- General Maintenance Tips 6-3
- Ground Control Cabinet Switch Removal 4-6

H
- High Pressure Filter 2-15
- Hoses and Cables 5-8
- Hydraulic Fluid 2-5
- Hydraulic Fluid Contamination Checks 2-5
- Hydraulic Fluid Handling Precautions 2-5
- Hydraulic Fluid Recommendations 2-5
- Hydraulic Fluid Reservoir 2-15
- Hydraulic Pump - Main (Type 1) 2-9
- Hydraulic Pump - Main (Type 2) 2-11
- Hydraulic Pump Type One (1) Adjustment 2-10
- Hydraulic Pump Type Two (2) Adjustment 2-13
- Hydraulic Pumps 2-9
- Hydraulic Reservoir Maintenance 2-15
- Hydraulic Swivel 2-26
- Hydraulic System Components 2-9
- Hydraulic System Flushing Procedure 2-6

I
- Introduction ... vi

L
- Level Cylinder, Master 2-25
- Level Cylinder, Slave 2-25
- Lift Cylinder .. 2-16, 5-18
- Lift Cylinder Pivot Pin Replacement 5-18
- Lift Cylinder Seal Replacement (On Machine) .. 5-18
- Lift Cylinder Seals, Bench Replacement 5-19
- Lifting Procedures 1-3
- Limit Switches 4-5
- Lubrication Chart xx

M
- Machine Component Locator xv
- Machine Specifications MP 40 viii
- Machine Specifications MP 50 ix
- Machine Specifications MP 60 x
- Machine Specifications MP 60Z xi
- Machine Specifications MP 70 xii
- Machine Specifications MP 80 xiii
- Maintenance Schedule 6-3
- Mechanical Components 5-3
- Miscellaneous Equipment 5-8
- Movement Alarm 4-4

P
- Pendant Control, Toggle Switch 3-5
- Pendant Switch Removal 4-6
- Platform ... 5-8
- Platform Component Locator xix
- Platform Console Switch Removal 4-6
- Platform Level Cylinder Pin Replacement 5-23
- Platform Level Cylinder Seal Replacement 5-23
- Platform Level Cylinders 5-23
- Platform Level System 2-24
- Platform Leveling Circuit, Bleeding 5-24
- Platform Rotate System 2-23
- Platform Rotator Manifold 2-23
Index (Continued)

R

Relays ... 4-5
Rotary Actuator 2-23
Rotary Actuator Maintenance 2-23
Routine Servicing 6-3

S

Service, Annual 6-5
Service, First Three Months of Operation 6-3
Service, Four Year Interval 6-5
Service, Monthly 6-4
Service, Semi-Annual 6-5
Service, Shift 6-4
Steer Cylinder 2-26, 5-5
Steer Cylinder Pins 5-5
Steer Cylinder Seal Replacement 5-5
Steer Disconnect Knob 2-26
Steer System 2-26
Steer System Maintenance 2-26
Steer Tie Rod Assembly 5-6
Steer Tie Rod Assembly Replacement 5-6
Steer/ Drive Manifold Assembly 2-26
Superstructure 5-7
Superstructure Component Locator xvii
Swing Drive Motor/ Reducer Assembly 2-19
Swing Drive Planetary Gear Type 2-20
with Integral Brake 2-20
Swing Drive with Integral Brake Assembly 2-22
Swing Drive Worm Gear Type 2-19
Swing Drive Worm Gear Type
with Integral Brake 2-21
Swing Drive/ Reducer Assembly Adjustment ... 2-21
Swing Gear and Pinion Shaft Adjustment 2-20
Swing Reducer/ Motor Assembly Adjustment ... 2-20
Swing System 2-19
Swing System Maintenance 2-22

T

Telescope Boom Cylinder Pin Replacement 5-21
Telescope Cylinder 2-17, 5-21
Telescope (Extend) Cylinder Removal 5-21
Telescope (Extend) Mechanical Function 2-18
Telescope (Extend) System 2-16
Telescope Cylinder Installation 5-22
Telescope Cylinder Seal Replacement 5-22
Tilt Alarm Adjustment 4-5
Tilt Alarm .. 4-4
Tilt Alarm Test 4-4
Tires ... 5-3
Tires, Changing 5-3
Towing Procedures 1-3
Transport the Unit 1-3
Truck or Trailer Transport 1-3

U

Undercarriage Component Locator xvi
Unloading Procedures 1-5

V

Valve Checks, Solenoid 2-27
Valve, Directional Control 2-19
Valve, Double Pilot Operated Check 2-23, 2-24
Valve, Drive Assembly 2-14, 3-4
Valve, Drive Enable 3-5
Valve, Drive Relief 2-14, 3-5
Valve, Flow Control 3-5
Valve, Flow Divider Assembly 2-14, 3-5
Valve, Flow Divider/ Combiner 3-5
Valve, Gate (Globe) 3-5
Valve, Hi/ Low Speed Drive 2-14
Valve, Holding Inspection 5-20, 5-22
Valve, Level Control 2-24
Valve Manifold, Hydraulic Assembly 3-4
Valve, Motion Control 3-4
Valve, Motion Control Assembly 3-4
Valve, Motion Control Assembly 2-14
Valve, Pressure Reducing 2-17
Valve, Rotate Control 2-23
Valve, Selector 3-4
Valves, Directional Control 2-15, 2-17
Valves, Drive 2-14
Valves, Relief 2-25

W

Wear Pads 5-9
Wheels and Lug Nuts 5-3
Table of Contents, Appendix

<table>
<thead>
<tr>
<th>Schematic or Device</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic Schematic MP 60-MP80 2WD</td>
<td>D-2324940</td>
</tr>
<tr>
<td>Hydraulic Schematic MP 60-MP80 2WD-2Speed</td>
<td>D-2324950</td>
</tr>
<tr>
<td>Hydraulic Schematic MP 60-MP80 4WD-2Speed</td>
<td>D-232496-0</td>
</tr>
<tr>
<td>Electrical Schematic Deutz L1011</td>
<td>D-2325120</td>
</tr>
<tr>
<td>Electrical Schematic Isuzu C-240</td>
<td>D-2325130</td>
</tr>
<tr>
<td>Electrical Schematic Wis. 35 HP</td>
<td>D-2325110</td>
</tr>
<tr>
<td>Electrical Schematic Wis. 65 HP</td>
<td>D-2339420</td>
</tr>
<tr>
<td>Electrical Schematic Wis. 65 HP Dual Fuel</td>
<td>D-2339430</td>
</tr>
<tr>
<td>Electrical Schematic Deutz F3L1011 & F4L1011</td>
<td>B-2367810</td>
</tr>
<tr>
<td>Electrical Schematic Ford 2.3 Dual Fuel</td>
<td>B-2364720</td>
</tr>
<tr>
<td>Electrical Schematic Ford F300 Dual Fuel</td>
<td>B-2367870</td>
</tr>
<tr>
<td>Electrical Schematic Perkins 104.22</td>
<td>B-2370390</td>
</tr>
<tr>
<td>Electrical Schematic Perkins 4.236</td>
<td>B-2370400</td>
</tr>
<tr>
<td>Electrical Schematic Isuzu 4DB1</td>
<td>B-2370340</td>
</tr>
<tr>
<td>Electrical Schematic Wis. 35 HP and Wis. 65 HP</td>
<td>B-2370510</td>
</tr>
</tbody>
</table>